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Case Study Applications of 

Statistics in Institutional Research 

Introduction 

Statistics has been defined as "a collection of methods for planning experiments, 
obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting and 
drawing conclusions based on the data" (Triola, 1995, p. 4). Does this sound like an 
abbreviated charge for the Office of Institutional Research at your institution? Saupe 
(1990) discussed several of the above-mentioned activities as functions of Institutional 
Research. He encapsulated this view by defining Institutional Research as "research 
conducted within an institution of higher education to provide information which supports 

institutional planning, policy formation and decision making" (p. 1). 
While statisticians are more likely to disagree than agree on a variety of issues, 

general agreement exists that the field consists of two subdivisions: descriptive and 

inferential statistics. Descriptive statistics consists of a set of techniques for the important 
task of describing characteristics of data sets and for summarizing large amounts of data 

in an abbreviated fashion. Inferential statistics goes beyond mere description to draw 
conclusions and make inferences about a population based on sample data. While most 
Institutional Researchers are quite knowledgeable in the area of descriptive statistics, 

many are less comfortable with inferential techniques. The use of inferential techniques 
can bring critical enlightenment to policy and planning decisions. 

Thus, this monograph focuses on the application of statistical techniques to 
Institutional Research; theory, application, and interpretation are the main tenets. The 
ultimate goal of the authors is to enhance the researchers' knowledge and interpretation of 
their data through statistical analyses. The text begins with a general background 

discussion of the nature and purpose of both descriptive and inferential statistics and their 

applications within Institutional Research. Each additional chapter follows a case study 
format and outlines a practical research question in Institutional Research, illustrates the 
application of one or more statistical procedures, analyzes data representing a hypothetical 
institution, and incorporates the output from these analyses into information that can be 
used in support of policy- and decision-making. 

This document is designed to give the reader a broad overview of or refresher in 
descriptive and inferential statistics as they are applied to case studies in Institutional 
Research. In this format, this is quite a challenge as a wide range of statistical concepts 
and procedures is covered in relatively few pages. No intent is made to document the 
numerical calculation of statistics or to prove statistical formulas. For further information 
in any of these areas, please consult the list of references. 

Statistical software packages are standard equipment in most Institutional 
Research offices as they handle complex analyses and large data files relatively 
effortlessly. While it is important that an Institutional Researcher be able to use statistical 
packages, this monograph is not designed to teach you how to do so. Rather, the emphasis 
of this monograph will be on the theory, application, and interpretation of statistical 
analyses. Many statistical packages are available on a wide range of computer platforms 
that can be utilized to perform these analyses. The Statistical Package for the Social 



Sciences (SPSS) is the choice of the authors for statistical software and SPSS for 

Windows was used to analyze the data from each case study, yet any standard statistical 
software can perform these analyses. For your convenience, the statistical commands that 
perform the analyses discussed in this text using SPSS for Windows are included in 

Appendix A. These commands can be readily translated into any standard statistical 
software. 

Before proceeding to the main text, some practicalelirnitations of this monograph 
should be declared. The first and most important of these points is that the best statistics 
cannot save an inferior research design. Statistical procedures are no substitute for 
forethought. Although several robust research designs are illustrated throughout this text, 
the primary emphasis of the monograph is not dedicated to design concepts. Suffice it to 
say that the research design is the foundation of a good study. If the design is weak, the 

analysis will crumble. Remember, the statistician's favorite colloquial expression: 
"Garbage in, Garbage out." Secondly, the topics and techniques covered in this text are 

for the most part standard and accepted practices. However, as in most fields, few 

absolutes exist with many differing opinions. Please feel free to review the references for 
other suggested practices and approaches to the tasks presented here. 

Finally, the case studies and example data utilized in this text are fabricated 
studies representing fictitious institutions, but are designed to represent real research 
questions facing Institutional Researchers. In no way should the case studies or data be 
associated with the authors or the institution of the authors. In the real world, the 

questions facing individual Institutional Researchers are as varied as the researchers 
themselves and their respective institutions. Yet the case studies have been carefully 

developed to represent the diversity in our profession and to present a variety of statistical 

procedures with universal application. 
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Chapter One: Basic Concepts 

This chapter is designed to give a brief overview of some basic statistical 

concepts and terms that will be used throughout this text and is divided into the following 

four sections: Characteristics of Variables and Levels of Measurement; Descriptive 
Statistics;  Probability, Sampling Theory and the Normal Distribution; and Inferential 
Statistics. While the titles of these sections imply that this chapter will cover all the 
material taught in an Introductory Statistics text, please be advised that the text flows 
briskly through each of the topics and is meant to serve only as a refresher. For more 
detailed information, please refer to Sprinthall (1987), Levin and Fox (1994), Triola 
(1995) or any basic statistical textbook. 

Characteristics of Variables & Levels of Measurement 

A variable is an indicator or measure of the construct of interest. A variable can 

be anything that has more than one value (e.g., sex, age, SAT scores). Variables should 

have operational definitions clearly stated. An operational definition of a variable defines 

specifically the variable measured and, unless it is a universally accepted definition, 
should be clearly published with any data and analyses. For example, when using SAT 

scores from an inquiry survey, SAT score could be operationally defined as "the self­

reported scores on both the math and verbal sections of the SAT examination." This 

alerts the reader that the results from this analysis might vary from results reported from 
the Educational Testing Service. For other examples, refer to Example Box 1. 

Example Box 1 

Variable Operational Definition 

FIE - Faculty Total number of full time faculty plus \part-time faculty headcount 

Student Anyone enrolled during a semester for at least 1 credit hour 

Compensation Salary plus fringe benefits 

While this operational definition is quite straightforward, some operational 
definitions get sticky and lead to the issue of construct validity. Many constructs or 
concepts in educational research are wide-open to interpretation. Institutional Researchers 
are usually quite familiar with the nuances of construct validity as we deal with the 
definition of FTE, full-time faculty, and other seemingly simple variables whose 
definitions are often capricious. The important point is to clearly communicate how you 
have measured the constructs (Le. , the underlying variables) in your design. 

The values contained within a variable are often determined by the researcher. 
This is a critical decision in the research design phase, and influences the possibilities for 
statistical analysis as these values define the level of measurement for that variable. A 
variable can have continuous or discrete values. Variables are discrete when they have a 
finite or countable number of possible values. For example, gender, ethnic background, 
and student status (i.e. , full-time / part-time) are discrete. Continuous variables have 
infinite range and can be measured to varying degrees of precision. Common examples of 
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continuous data are dollars, square footage, height, weight, and age. A continuous variable 

may be measured as if it were discrete; however, the reverse is not true. For example, 
salary data can be broken down into discrete categories (Example Box 2). In some 

instances, dividing a discrete variable by a discrete variable creates a continuous scale; for 
example, admissions yield ratios (number enrolled divided by number applied). 

Example Box 2 

Salary as a Discrete Variable Salary as a Continuous Variable 

$1 - $25,000 Actual Salary in dollars 
$25,001 - $50,000 $42,0 1 4 

Over $50,00 

Levels of measurement can be further broken down into a hierarchy with four 
categories: nominal, ordinal, interval, and ratio. Variables which are Nominal level of 
measurement consist of names, labels and categories; this is the lowest level of the 
hierarchy. In classifying data, subjects or observations are identified according to a 
common characteristic. When dealing with a nominal variable, every case or subject must 

be placed into one and only one category. This requirement indicates that the categories 

must be non-overlapping or mutually exclusive. Thus, any respondent labeled as male 

cannot also be labeled as female. Also, this requirement indicates that categories must be 
exhaustive; that is, a place must exist for every case that arises. Nominal data are not 

graded, ranked or scaled in any manner. Clearly then, a nominal measure of gender does 
not signify whether males are superior or inferior to females. Numerical codes are often 
assigned to the values of nominal variables, adding to the confusion. For example, even 

though the value 1 is assigned for female and 2 for male, these are simply labels and no 

quantity or quality can be implied. No mathematical calculations can be applied to 
numbers that only serve as labels. Thus, limits are placed on what can and cannot be done 
statistically with these data. The most appropriate statistical measures for nominal data 
include: frequencies, proportions, probabilities and odds. 

When the researcher goes beyond mere classification and seeks to assign order 
to cases in terms of the degree to which the subject has any given characteristic, he or she 

has assigned an ordinal level of measurement. With an ordinal scale, imagine a single 
continuum along which individuals may be ordered. However, the distances between 
values on the continuum may not always be meaningful or even known. Rather, the 
ordinal level of measurement yields information about the ordering of categories, but does 
not indicate the magnitude of differences between the numbers. An ordinal level of 
measurement supplies more information than is obtained using a nominal scale, since 
subjects are able to be grouped into separate categories, which can then be ordered. The 
order of the categories can be described by adjectives like more and less, bigger and 
smaller, stronger and weaker, etc . A familiar example of ordinal level of measurement is 
the classification of faculty as assistant, associate or full professors . Although we know a 
full professor is a higher status than an associate or assistant, it cannot be said that two 
associates equal one full professor. 

Additionally, most Likert scales are considered to be ordinal level of 
measurement. On student surveys, Likert scales are often used to measure satisfaction 
with services or the extent of agreement with various statements. For example, students 
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may be asked to respond to the question, "Overall, how satisfied are you with the social 

life on campus?" on a 5-point scale where 1 equals 'very dissatisfied' and 5 equals 'very 
satisfied.' Clearly, if respondent A marks a 5 and respondent B marks a 4, then respondent 

A is more satisfied than respondent B. However, the magnitude of the difference in their 
levels of satisfaction is not directly distinguishable. 

By contrast, interval level of measurement not only classifies according to the 
ordering of categories, but also indicates the exact distance between levels. The interval 

scale requires the establishment of some common standard unit of measurement that is 
accepted and replicable. Common examples of interval level of measurement are SAT 
scores and temperature in Fahrenheit or Celsius. Given a standard unit of measurement, it 

is possible to state that the difference between two subjects is a particular number of units. 
However with interval data, it is not possible to make direct ratio comparisons between 
levels of the data. With interval data such comparisons are not possible because there is no 

meaningful zero point (Le., zero does not imply the absence of the quantity being 
measured). For example, 0 Celsius does not imply no temperature; rather the value 

represents the freezing point of water. Also, SAT scores are normally considered interval 
because the base is not equal to zero or "no ability." Thus, a score of 600 is not twice as 

high as a score of 300. 

If it is possible to locate an absolute and non-arbitrary zero point on the scale, 
then the data are ratio, the highest level of the measurement hierarchy. In this case, scores 

can be compared by using ratios. For example, if the endowment of school A is $10 

million and the endowment of school B is $25 million, then school B's endowment can be 
said to be 2 \times that of school A. After all it is possible to have a $0 endowment. While 
many researchers make the distinction between interval and ratio level of measurement, 
some do not. Although the distinction between the two is subtle, it is important to 
recognize the limitation on the types of comparisons of scores one can make between the 
two levels. On the other hand, fewer statistical techniques require a ratio scale; making the 

distinction between the interval and ratio levels of measurement somewhat irrelevant. 

All statistical analyses require a particular minimal level of measurement. An 
important general guideline is that statistics based on one level of measurement should not 

be used for a lower level, but can be used for a higher level. For example, statistics 
requiring ordinal data may be used on interval or ratio data, but should not be used on 
nominal data. Figures I and 2 summarize the characteristics of each of the four levels that 
have been discussed and illustrate the relationship of the levels of measurement of the 
variable to the level of measurement for statistical analysis . It is important to note that 
when a higher level of measurement of data is analyzed using a statistic based on a lower 
level of measurement, information may be lost if the data is collapsed into broader more 
discrete categories. Thus, the decisions made concerning the level of measurement of 
variables have a direct impact on the type of statistical analyses that can be performed. 

To review the levels of measurement consider the following scenario: you are 
consulting with your admissions office on the design of an Inquiry Survey and you wish to 
add a question concerning income level. Figure 3 summarizes several adequate ways that 

you could ask for this information. Each of the four questions will result in one of the four 
levels of measurement. In deciding which question to use, a general rule of thumb is to 
measure at the highest level appropriate and possible. You can always collapse or combine 
scores later to create a lower level of 
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Figure 1 

Summary of Levels of Measurement 

Levels of Measurement 
CharactenstIcs 

Ratio 

Mutually 
Exclusive V V V V 

Order to Scale V V 
Standardized 

Scale V 
Meaningful 

Zero 

Note: Figure is the work of David Drews, Juanita College . 

Figure 2 

Relationship between Level of Measurement and Use of Statistical Procedures 

Statistical Procedure 
Variable 

Nominal 

Ordinal 

Int.IRatio 

Nominal Ordinal Int.IRatio 

v 
V Q� 

OK. VData 

Note: Statistical analyses are appropriate or not appropriate depending on the level of 
measurement of your data. Figure is the work of David Drews, Juanita College. 

measurement; however, the reverse is not possible. Keep in mind, for some variables 

levels of measurement other than nominal or ordinal are not possible. For example, gender 
or ethnic background may only be nominal and most attitudinal scales are ordinal in 
nature. 
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Figure 3 
Examples of Levels of Measurement 

1. Do you work? _Yes _No [nominal] 

2. Please indicate how you would classify your socio-economic status: 

[ordinal] 

_low-income _middle-income _upper-income 

3 .  Please check the category that appropriately describes your annual 

earnings: [interval] 

_$0 to $25,000 _$50,001 to $75,000 

_$25,001 to $50,000 _over $75,000 

4. What was your annual income for last year? 

[ratio] 

In general, statistical procedures may be grouped into two classifications: 

parametric or non-parametric. A major distinction between the two classifications is that 

parametric procedures require interval or ratio level of measurement, while non­

parametric procedures only require nominal or ordinal measurement.· For the most part, 

the emphasis in this text will be on parametric procedures, with the exception of the 

Descriptive Statistics section of this chapter and Chapter 4 on Chi-Square. 

Once a variable has been clearly defined and measured the researcher must 

consider the validity and reliability of measures as an important aspect of research design. 

Validity is the degree to which a test or scale measures what it purports to measure, while 

reliability is the extent to which a test or scale consistently measures what it purports to 

measure. Measures are said to be reliable when repeated trials yield similar results. For 

example, if your student information system yields a different count each time you request 

it, the system may not be considered to be reliable. Measures are said to be valid when 

they are indeed measuring what the researcher claims they are. By definition, measures 

that are valid are reliable; however, measures that are reliable may or may not be valid. 

For example, the SAT examination process has had its validity questioned as an 

achievement test. Some opponents claim it is a test of how successful SAT preparation 

courses are, while others claim it serves best as an indicator of parental income, socio­

economic status, high school quality and race. Yet the score distributions are highly 

reliable across years. 

This discussion of variable characteristics will end with the definition of 

independent and dependent variables. In statistical analyses, variables are referred to as 

being either independent or dependent. These terms define, in part, how the variables 

relate to one another. Some researchers use the terms causal or predictor as synonymous 

with independent and resultant or criterion with dependent. Variables are labeled as 

Also, parametric techniques make an assumption about the normal distribution of data 
and non-parametric do not. Both parametric and non-parametric statistics have both 
descriptive and inferential alternatives. 
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Tendency. 

independent when we want to examine their influences on other variables. Variables are 

labeled as dependent when their values are used to measure the effects of the independent 

variable(s). In statistical models, the value of the dependent variable depends, in part, on 
the value of the independent variable(s). In some instances, variables can be used as either 
independent or dependent in any given analysis. For example, one researcher could 
examine the influences of gender on SAT performance. In this analysis, gender would be 

the independent variable and SAT the dependent. However, in another analysis, the 

influences of SAT and gender on college choice could be explored. In this analysis, both 
gender and SAT are independent variables and college choice would be the dependent 
measure. With this background, let us now tum our attention to the basic principles of 
descriptive statistics. 

Descriptive Statistics 

Descriptive statistics is familiar to most Institutional Researchers and is used 
primarily to describe important characteristics of data. Three common types of descriptive 

statistics are central scores or measures of central tendency, variation within the scores or 

measures of dispersion, and the nature or shape of the distribution. 
Measures of Central When summarizing data one of the first measures 

most individuals seek is a 'central' or 'average' score. An important and basic point to 

remember is that there are several different ways to compute an average. The mean is the 
arithmetic average of all scores and is the most overused and abused workhorse of all the 
measures of central tendency. When given a list of scores and asked to produce an 
average, most people will obligingly proceed first to total all the scores and then to divide 
that total by the number of scores. However the mean should only be applied when the 

data consist of an interval or ratio level of measurement and thus produce a parametric 

statistic, although it is common practice to use the mean as measure of central tendency 

with ordinal scales as well. For example, meaningful interpretation exists for the mean of 
a Likert scale (e.g. the mean of a rating of overall satisfaction of the college experience). 

On the other hand, it is totally inappropriate to report the mean of categorical 
data. One would not report the average gender as 1.67, although this could be interpreted 
as implying that the distribution was mostly female (if male was coded 1 and female 
coded 2). If more than two categories existed, then all potentially decipherable meaning 
would be lost. In general, reporting the mean of a nominal scale is considered a statistical 
taboo. 

The median is the middle value when the scores are arranged in order of 
increasing magnitude. A median can be used to describe ordinal, interval and ratio levels 
of data and is synonymous with the 50th percentile. The score representing the median is 
located at the point where 50 percent of the cases fall above and 50 percent fall below. As 
the definition states, the median may be found by arranging all responses in numerical 
order and locating the middle score. If the number of scores is an odd number, the median 
is the number that is exactly in the middle of the list, while if the number of scores is 
even, the median is found by computing the mean of the two middle values. For example, 
if you have 13 scores the median is the value of the 7th score, while if you have 14 scores 
the median is the mean of the 7th and 8th scores (Example Box 3) .  
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Dispersion. 

Example Box 3 

1,2,2,3,4,5,6,7,7,8,9, 10, 12 1,2,2,3,4,5,��7,8,9, 10, 12, 19 

Median = 7th score Median is between the 7th & 8th scores 

Median = 6 Median = 6.5 

The mode of a set of scores is obtained by selecting the score that occurs most 
frequently. In instances where no score is repeated, no mode exists. In those cases when 
two scores both have the greatest frequency, the distribution is bi-modal and both values 

are listed as the mode. Also, if more than two scores occur with the same greatest 

frequency, the distribution is said to be multi-modal and each is listed as a mode. The 
mode is appropriately calculated with all levels of data, but is the only measure of central 
of tendency applicable for nominal level data. For interval and ratio scales the mode 

provides little information in comparison to the mean and median, although the mode can 
easily be calculated. 

Technically either the mean, median or mode can be reported as a central 
tendency or "average score"; however, the freedom to select a particular statistic (i .e. ,  

mean, median, or mode) can slant the description of data. Consider an SAT distribution 
with a mean of 647, median of 660 and mode of 690. Reporting the mean presents a lower 
average SAT; the mode a higher average. So how does one decide which statistic to 
report? The level of measurement, distribution of data, and characteristic of the statistic 

must be taken into account. The mean is most affected by extreme scores. One extremely 

high or extremely low score can drastically alter the mean, while the median is a measure 
of position and is not affected by extreme scores. In contrast, the mode does not take all 
scores into consideration - only those occurring with the greatest frequency. In general, if 
data are of a ratio level of measurement and are not suspect to extreme scores, the mean 

would be the most appropriate statistic. Under those circumstances where extreme scores 
are plausible, the median should then be reported. When in doubt, report both. Finally, if 
data are nominal, the mode should be reported. 

Measures of It is quite possible for two different sets of scores to 
have the same mean, median, and mode (Table 1). Yet a simple perusal of the data values 

would lead one to state that the data sets are not at all similar. So, what distinguishes these 

two distributions from one another? The manner in which the scores are distributed about 
their central scores is the distinguishing factor. Several statistical techniques describe the 
variability of scores (i.e., measures of dispersion). The range is the simplest of these 

measures and is the difference between the highest and lowest score. For example, if the 
lowest institutional grant given to a member of the incoming class is $500 and the highest 
award is $15,000, then the range of grant awards is $14,500. 

Percentiles may also be used to tell where a score lies in relation to the rest 
of the distribution. Percentiles report the proportion of scores that fall below a given 
score . For example, if a student scored in the 88th percentile on the MCAT exams 
then she earned a higher score than 88 percent of students who took that exam. The 
most often used percentile is the 50th percentile (Le. ,  the median); yet, reviewing the 
median for the two data sets in Table 1 we find the same value. However, a set of 
percentiles may be used in a box and whisker format to provide a quick and 
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Table 1 

Comparative Data Sets 

Group A GroupB 

65 42 
(fi 54 
61 58 
68 62 
71 67 
73 77 

77 
77 85 
77 93 
77 100 

SPSS Descriptive Statistics 

GROUP_A Group A 

Mean 71. 500 Median 72.000 Mode 77.000 

S t d  dey 4.767 Variance 22.722 Range 12.000 

Perc  entil  e Value Perc  entile Value Percent ile Value 

25.00 66.750 50.00 72.000 75.00 77.000 

valid c a s e s  10 Mis sing c a s e s  o 

GROUP_B Group B 

Mean 71. 500 Median 72.000 Mode 77.000 

Std dey 18.216 Varianc e  331. 833 Range 58.000 

Percent i l e  Value Perc  entil  e Va lue P e r c  entile Va l u e  

25.00 57.000 50.00 72.000 75.00 87.000 

valid c a s e s  10 Mis sing c a s e s  o 
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accurate image of the variability of the distribution. Techniques for creating box and 

whisker plots vary. Most involve the use of the 10th, 25th, 50th, 75th, and 90th 

percentiles. The standard graphical format for this plot includes: a horizontal scale 

representing the range of scores of data, a vertical line for the 50th percentile, a box 

around the middle 50 percent of the distribution (i.e., between the 25th and 75th 

percentiles) and extending whiskers to the 10th and 90th percentiles. Some box and 

whisker plots include other markers, such as points for the 1st and 99th percentiles. 

Figure 4 displays two box and whisker plots for the data sets found in Table 1. Notice 

how these plots graphically tell the differences in the distribution of these two data 

sets. Data set B has a much larger box indicating the greater spread in the scores than 

does data set A. 

Figure 4 

Box & Whisker Plots for Test Scores from Table 1 

Group A 

40 60 70 80 90 100 

10th', lie 9O\b"'1Ie 

lSth"lIe 7Sth"lIe
Medlan 

Test Scores 

Note: In this data set the 75th and 90th percentiles are the same value. 

Group B 

T T 
10th "'lie t T t 9O\b"'1IelSth"lIe Median 751h"1Ie 

40 60 80 90 100 

Test Scores 

1 1  



73 

Standard deviation and variance are two statistics that quantify the variability of 

scores about the mean of a distribution. Like the mean, these measures of variability 
should only be computed when data are interval or ratio level of measurement and thus are 
considered to be parametric statistics. First, one should clearly understand that standard 
deviation and variance measure the characteristics of dispersion or variation among the 
scores. Thus, scores grouped closer about their mean will yield a smaller standard 

deviation or variance. Notice in Table 1 that data set A has a smaller standard deviation 
and variance than set B .  Conversely, as the data spread farther away from the mean the 
corresponding values of standard deviation and variance increase. 

When measuring dispersion in a collection of data, one reasonable approach is to 

begin by determining the individual amounts by which scores deviate from the mean (x). 

For anyeone score, the amount of deviation can be found by subtracting the score from the 

mean (x -x). Logically, a good measure of dispersion would seem to be the sum of the 
deviations for all scores (i.e., I(x-x»; however, because the mean is the central score, this 
sum will always equal O. One way to correct this problem is to square each of the 
deviations. So, in computational terms, variance can be determined by summing the 
squared value of deviation of each score from the mean, and divide that sum by the 

number of scores minus one (Le. ,  I(x-X)2/n-l). Example Box 4 shows these calculations 

for data set A in Table 1 .  

Example Box 4 

x x-x (X-x)2 

65 -6.5 42.25 

66 -5.5 30.25 

67 -4.5 20.25 

68 -3.5 12.25 

7 1  -0.5 0.25 

1 .5 2.25 

74 2.5 6.25 

77 5.5 30.25 

77 5.5 30.25 

77 5.5 30.25 

Sum = 715 Sum=O Sum = 206.5 

Mean=7 1 .5 Variance = 22.722 

12 



Shape. 

Standard deviation is a simple algebraic manipulation of variance. To obtain 

standard deviation from variance, take the square root; vice versa, to obtain variance from 

standard deviation, square the value. The computational formula discussed above is 

theoretical in nature and is designed to illustrate the principles of standard deviation and 

variance; in practice, one would not use this formula to derive standard deviation or 
variance. Shorter computational formulas are available; better yet, use a statistical 
package. 

Distribution When analyzing data one of the first steps that Institutional 

Researchers perform is to create frequency distributions . This first step allows one to get a 
first look at the data and provides a feel for the data to serve as a guide for future 

analyses. A frequency distribution is aptly named as it lists all the categories of scores in 

either ascending or descending order, along with their corresponding frequency. In most 

statistical packages, along with the frequency for each category, the percentage, valid 
percentage and cumulative percentage are presented. The percentage represents the 
percent of the total sample size that corresponded with that response. The valid percentage 
excludes respondents missing a value for that particular variable and cumulative percent 
summarizes the percentage included in the current and preceding responses. Cumulative 
percentages may be used to determine any percentile including the median. To determine 

the median from a frequency distribution, look down the cumulative percentage column 

for the first category that contains 50.0% or greater; the corresponding value for that 
category is the median. Table 2 presents a frequency distribution of SAT scores produced 
using SPSS.  

While a frequency distribution presents a table that summarizes the shape of the 
distribution, graphics are frequently used to provide a visual image of the distribution 

shape. The distribution of data is an extremely important characteristic that affects the 
methods of analysis for and conclusion drawn from data. Statisticians have identified 
some common distribution shapes: uniform, bi-modal, multi-modal, positively-skewed, 
negatively-skewed, and normal. Figure 5 presents a graphic display of each of these 
distribution shapes. A distribution that is evenly spread over the range of possibilities is 
called uniform. In bi-modal and multi-modal distributions, clusters or grouping of scores 

occur about each mode. In a negatively-skewed distribution, the majority of respondents 

scored on the high end of the scale, while a few outliers pulled the tail of the distribution 

to the negative end. The term "skew" refers to the tail, so when you think of a negatively­
skewed distribution remember the tail goes to the low end of the scale. Conversely, in a 
positively-skewed distribution, the majority of the scores fall on the low end of the scale 
and a few outlying high scores pull the tail to the positive end of the scale. 

The normal distribution is an important concept in understanding statistics.  The 
normal distribution is a theoretical construct based on an infinite number of cases. The 
area under the curve includes all elements or cases and the curve is symmetric about the 
center point. Therefore, the right side of the distribution represents half of the cases and 

the left side the other half. The area under the curve between any two points on the 
horizontal axis represents the percentages of cases that fall within that range. The 

principles of the normal distribution are directly applicable to the distribution of val 'les 

and are an integral part of sampling theory. 
The world as we know it is normally distributed. This implies that for most of the 
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Table 2 

SPSS FREQUENCIES Output 
SAT SAT Score 

valid Cum 
Value Label Valup. Frequency Percent Percent Percent 

250 1 .2 .2 .2 
270 .5 .5 .7 
310 .9 .9 1.6 
320 .2 .2 1.7 
340 
360 .5 .5 

2.1 
2.6 

370 .5 .5 3.1 
390 .5 .5 3.6 

.3 
400 .6 4.3 

5.2 
410 

.8 
420 
430 

.5 

1.2 
6.0 
7.2440 1.1 

450 .8 .9 8.1 
460 12 
470 8 1.3 

2.1 10.2 
1.4 11. 6 

480 17 2.7 2.9 14.5 
490 
500 18 
510 14 

2.9 3.3 17.8 
2.8 3.1 20.9 
2.2 2.4 23.3 

520 26 4.1 4.5 27.8 
530 31 4.9 5.3 33.1 
540 18 2.8 3.1 36.2 

27 
550 
560 

5.2 41. 9 

5.0 5.5 
46.6 
52.1570 32 

4.6 5.0 
580 27 
590 29 

56.7 
61. 7 

600 31 
610 15 

4.9 
2,4
4.1 

67.1 
69.7 

620 26 
2,6
4.5 74.1 

630 21 3.3 3.6 77 .8 
640 21 3.3 3.6 81. 4 
650 22 3.5 3.8 85.2 
660 13 2.0 2.2 87.4 
670 24 3.8 4.32 91. 6 
680 14 2.2 2.4 94.0 
690 8 1.3 1.4 95.3 
700 13 2.0 2.2 97.6 
710 5 .8 
720 4 .6 .7 

98.4 
99.1 

730 5 .8 .9 100.0 
a 55 Missing 

Total 635 100. a 100. a 

Mean 5 6 6  . 6  6 9  Med i an 570  . 000 Mode 550 . 000 
S t d  Dev 84.9 2 4  Var i ance 7 2 1 2  . 1 2 2  

Percent i l e  Value Percent  i l e  Va l ue Percent  i l e  Value 

2 5  . 00 520  . 00 50 . 00 570  . 000 7 5  . 00 6 30 . 000 

Va l i d c a s e s  580 Mi s s i ng c a s e s  

elements in the world that can be measured among large populations, few have very little 
of the element, most have some and few have a great deal. Let us consider intelligence (as 
measured by IQ). Very few people score below 75, most score around 110 and very few 
above 140 (Corsini, 1984). The normal distribution is graphically illustrated by a bell­
shaped curve. The principle of normal distribution is also widely accepted as being 
applicable to a wide range of measurable characteristics, such as hand size, height, 
weight, number of free throws made, lung capacity, lifespan, and intelligence (just to 
name a few). The idea of characteristics being normally distributed in our world forms the 
foundation on which many statistical theories are based. 
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If all elements in a normally-distributed theoretical population were measured 
and the population mean and standard deviation calculated, then 34 percent of the 
population would fall between the mean and one standard deviation above the mean and 
34 percent would fall between the mean and one standard deviation below the mean. Thus, 
68 percent of all elements would fall within one standard deviation of (above or below) 
the mean. An additional 13 .5 percent would fall between the first and second standard 

1 1 1 
Mode Mdn Mean 

Bi-Modal 
Characteristics 

1 
Mode 
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deviation from the mean; thus, 95 percent of all elements fall within 2 standard deviations 

of (above or below) the mean (34.0% + 34.0% + 13.5% + 13.5%). Next, another 2.3% 

falls between the second and third standard deviation from the mean; so 99.6 percent of 
all elements fall within 3 standard deviations of (above or below) the mean (34.0% + 
34.0% + 13.5% + 13 .5% + 2.3% + 2.3%). Finally, the remaining fraction of a percent is 
divided evenly between both the tails of the distribution beyond the third standard 

deviation. The percentages of the standard normal distribution are graphically displayed in 
Figure 6. In the real world, a surprisingly large number of variables when measured and 
plotted will create an essentially normal distribution. 

Figure 6 
The Standard Normal Distribution 

0.5 

34% 34% 

o 

Knowing what proportions of the curve fall within given standard deviations 
from the mean also provides knowledge about where the percentiles lie. If you know a 

score is one standard deviation above the mean, you also know that this score represents 
the 84th percentile. Why? Well, 50 percent of the distribution falls below the mean, then 
another 34 percent exists between the mean and 1 standard deviation above the mean, so 
50 + 34 = 84. So if your score is 2 standard deviations above the mean, what percentile 
does that represent? Right, 97.5 (50 + 34 + 13.5). 

In fact, the normal distribution is at the core of inferential statistics. In 
comparison to descriptive statistics, which describe important characteristics of data, 

inferential statistics allow us to make inferences and draw conclusions about a population 
based on sample data. Before discussing inferential statistics, it is crucial to define the 
terms sample and population and also understand the principles of probability, sampling 
theory, and the normal distribution. 

Probability, Sampling Theory & the Normal Distribution 

Probability theory and sampling are the basis for inferential statistics. In order to 
grasp an understanding of probability theory, the terms sample and population must be 

16 



Sampling Sample 

defined. A population consists of all elements or subjects to which your conclusions are 

intended to apply. A sample is a subset of the population that is actually measured and 
used as a matter of convenience. In probability we deal with a known population and 

make conclusions about a sample based on the knowledge of the population. For example, 

if the pool of applicants to an institution consists of 700 males and 800 females and we 

were to randomly select one applicant to receive an expense-paid visit to our institution, 
the chances of selecting a female are .53 or 800/1 ,500. Conversely in statistics, our 

population characteristics are unknown. First, make a random sample; next determine the 
sample statistic and then use the sample to make a conclusion about the population. 

Thus, the sample is at the crux of inferential statistics. A sample is said to be 
random when every element has an equal and known chance of being included in the 
sample. No systematic or known bias can exist in a random sample. When surveying a 

sample of students on Campus Life issues, most Institutional Researchers draw a random 

sample of currently enrolled students, distribute the survey, collect responses and then 

assume that they have a true random sample. However, just because you have randomly 
selected subjects does not insure that you have a random sample of responses. In fact, 

rarely is a true random sample obtained in Institutional Research. For example, a 25 
percent sample (2000 students) is randomly selected from the 8000 students enrolled at 

your university. A total of 1200 surveys are returned for a response rate of 60 percent. But, 
how can we know that no response bias is present in those who chose to complete and 
return the survey? Did only those students who were highly affiliated and satisfied with 
the institution respond, or is the opposite true? Did the respondent group exclude any 
portion of the population? For example, were off-campus students less likely to return the 
survey because it was delivered via campus mailboxes and they rarely check their boxes? 

While most Institutional Researchers will verify the demographics of the non­

respondent pool, the question still remains: Is the sample representative of the population? 
Well, the answer is not known, unless the entire population is measured. But sampling 
theory, properly applied, makes it highly likely that the sample is representative. A sample 

is drawn, because it is usually unreasonable to measure each member of the population 
(try to tell this to the Census Bureau). Remember, the intent is to measure a known portion 

of the population and to use that sample data to make inferences about the population. So 
if the sample is skewed does the model fall apart? NO! Although the representativeness of 
the sample may never be known, a degree of confidence regarding the extent to which a 

sample is representative of the population can be calculated. The sampling distribution of 
sample means allows us to determine this confidence interval. Now, let us explore this 
important principle with a theoretical example. 

Distribution of Means. This example is much more enjoyable 
if you have a box of M & M candies to follow along with us. The possibility of including 
a box with the text presented insurmountable logistical challenges. Now we know how M 
& M's are distributed. The Mars company in Hackettstown, New Jersey provided the 
distribution for plain M & M's reported in Figure 7. For your information, there are 519 
plain candies per pound and 183 peanut candies. 

17 
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Figure 7 
Distribution of Plain M & M's 

Brown 30 Percent 

0 Yellow 20 Percent 

0 Red 20 Percent 

0 Green 1 0  Percent 

Blue 1 0  Percent 

0 Orange 1 0  Percent 

So if we took repeated samples of 50 plain M & M's, the average number of red 

candies should approach 1 0  candies (20%). How many red candies in your sample (don' t  

eat the data yet !)  What is the mean number of  red candies among all of  the samples 

drawn? The range? Any outliers? We won't  always find 10 in every sample; often we will 

find slightly more or slightly less, but rarely many more or many less. Sampling theory 

tells us that we can be confident our sample lies within a certain margin of error (Le. ,  a 

confidence interval). This theorem states that 95 percent of samples we would take will be 

within two standard deviations of the true value.2 Therefore, when you survey students 

and 73 percent of them state that they are satisfied with their overall academic experience, 

you can infer that this is representative of the population. You know that this value is 

within 2 standard deviations of the true population proportion. There is still a 5 percent 

chance that your sample is not within two standard deviations of the true value. Just as if 

you ended up with a sample of only 2 red M & M's, you would have had bad luck in 

drawing a sample that is not representative of the population. Now, if you haven't 

already had the urge, start munching on your M & M's. 

For all statistical techniques, basic assumptions drive the statistical formulas and 

provide the guidelines for their application. Recall how it is nonsensical to calculate a 

mean for nominal level data. The assumptions for inferential statistics, though less 

obvious,  are equally critical to the appropriate use of the statistical technique. Many 

researchers, naively or conveniently, forget to check the limitations of data. Also, it is 

It is important to recognize that different samples produce different confidence 
intervals and in the long run 95 percent of those intervals contain the actual population 
parameter. It is incorrect to say that the population parameter has a 95 percent chance 
of falling within the limits of any confidence interval, but it is correct to state, in the 
long run, 95 percent of all samples collected will contain the population parameters 
within its limits. 
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tempting to use some of the more powerful statistical techniques when they are not 

appropriate. While you may be able to pass your results off on a less educated audience, 

predictions or decisions made from these analyses will be less forgiving. 
In the chapters that follow, various inferential techniques will be discussed. Each 

chapter we will use a case study approach to describe an Institutional Research scenario, 
discuss the background and assumptions for the statistical procedure, suggest ways for 

reporting statistical findings and discuss implications for decision-making. 
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Chapter Two 

Comparing Group Means: Are T here Real 

Differences Between Average Faculty Salaries Across Departments? 

Case Study: 

Faculty salaries vary by many factors, some of which are logical, such as length 

of service, age, rank, and demands of the market. Others are less logical, and may be 
attributable to unfair covert mechanisms in an institution's salary system, such as paying 

lower salaries to women or members of less lucrative departments. In any situation 
involving differences in means, some of the difference is attributable to randomly­
occurring factors. For example, if you were to attend a meeting of the AAUP and asked a 

group of 1000 professors to randomly split into two groups and then you calculated the 
average salary for each of the two groups, you would not find that the two means are 
identical. In fact you could repeat this exercise 100 times and you would continue to find 
differences of varying sizes. Assuming that the two groups are created randomly, these 
differences are attributable to randomly occurring factors. The statistical procedures t­
test, one-way Analysis ofeYariance (ANOYA) and Factorial ANOVA can be used to 

explore differences in means across groups. These tests help us decide whether a sample 
difference is real or the result of randomly-occurring factors. The procedures evaluate the 

magnitude of sample differences to determine whether the difference is merely the result 
of randomly-occurring factors, or if it is attributable to some other forces in the data (i.e. , 
the independent variable(s)). 

The case at hand involves the average faculty salaries at a small university. The 

chair of the Humanities division has learned that the average salary for assistant 
professors in her department is much lower than the average salary for assistant professors 
in the Business School. The Humanities chair fears that this may be reflective of a shift in 
the priorities of the university. Perhaps the university is de-emphasizing its traditional 
commitment to the liberal arts and is moving toward a pre-professional orientation. The 

chair wants to know if the magnitude of the difference between the average salaries of 
Humanities and Business assistant professors is large enough to attribute it to more than 
common or randomly occurring differences between the two groups. In the course of 
investigating the situation, the Humanities chair learns that the average salary for assistant 
professors in the Natural Sciences is also higher than for the Humanities. At first glance, 
this seems to further confirm her notion that the university is moving towards a pre­
professional orientation. She now wants to know whether the Natural Science salaries 
differ significantly from those in the Humanities. 

After a meeting of the Humanities faculty, a female assistant professor asks the 
chair to explain the large disparity between her salary two years into her job and the salary 

of her male colleague who teaches in the Natural Sciences with the same length of 
service. She wants to know if the university is perpetuating the national trend of paying 
women less than men for the same job. Many comparisons are possible and many 
questions may be answered that have legal, morale, and budgetary consequences for this 
university. The Institutional Research office is asked to investigate the disparities between 
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the salaries of assistant professors in the Humanities, Natural Sciences, and School of 

Business. This case study will be used to illustrate the application of the t-test and one­

way ANOV A. The determination of which statistical procedure is most appropriate is 

dependent on the research design. Before proceeding with a brief discussion of research 

designs, some descriptive statistics for this case study are presented in Table 3 .  

Research Designs: 

ANalysis Of VAriance (ANOVA) is a name for a collection of statistical models 

and methods that deal with whether or not the variable means differ significantly across 

observation groups. In general terms, ANOVA is a statistical method that permits one to 

make an interpretive statement about overall differences among the means for the groups 

of observations. ANOVA designs vary based on two elements. First, is the independent 

variable an independent groups or a repeated measures factor? Do not get the terms 

independent variable and independent groups confused. Remember in Chapter 1 we 

defined the term independent variable as the variable whose effects on the dependent 

variable we are attempting to measure. In an independent groups design, subjects are 

categorized into one and only one level of the independent variables. Probably, the most 

common example of an independent groups variable is gender. In a repeated measures 

design, all subjects are tested on all levels of the independent variable. In Institutional 

Research, tracking students over their years at our institution would be an example of a 

repeated measures variable (year in school). In basic terms, independent groups refers to 

measuring different groups of people usually at the same time and repeated measures, 
the same people measured at different times. The simpler of the two forms from a 

calculation or interpretive viewpoint is the independent groups design. In contrast to the 

independent groups design, the repeated measures design has greater face validity in 

that the subjects are being compared to themselves. 

The second element in determining design is only relevant to ANOVA. This 

element is the number of independent variables. By contrast, a t-test may only have one 

independent variable, which has only two levels. A t-test is nothing more than a special 

case of ANOVA in which the one independent variable has only two levels. A one-way 

ANOVA may only have one independent variable, but this variable has three or more 

levels. Comparing the GPAs of males to females would be an example of an independent 

groups t-test. Tracking the GPAs of students across their four years at our institution 

would be a one-way repeated measures ANOVA. 

A Factorial ANOVA is an ANOVA that has any number of factors (Le. ,  

independent variables) each with any number of levels (Le.,  two or more). In each of 

these designs, the independent variable(s) may be either independent groups or repeated 
measures factors, leaving an inordinate amount of possible designs. For example, one 

might have a 2 X 4 ANOVA, the first factor being an independent groups factor with two 

levels representing the gender of a subject and the second variable being a repeated 
measures factor representing the GPA of a graduating senior at the end of each of his or 

her four years. This design is graphically illustrated in Example Box 5 and would be 

referred to as a mixed Factorial ANOVA. 
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Table 3 

Descriptive Statistics for Salary Data of 

Assistant Professors across Gender and Division 

Female Male Overall 

Division M SD N M S D  N M SD N 

Humanities 49,838.52 9,224.04 24 45,796.33 8,7 19 .61  24 48,736. 10 9, 138.0 1  4 8  

Natural Sciences 56,365.24 6,89 8.76 2 1  54,2 13 . 14 5,87 1.54 28 55, 135 .47 6,354.56 
IV 
IV 

Business 6 1,250.00 9, 148.08 3 59,424.77 7,754.28 15 59,728.97 7,736.50 1 8  

Overall 53,407. 17 8,932.45 48 54,259 .74 8, 195 . 85 67 53,850.5 1  8,824.46 1 15 

https://8,824.46
https://53,850.51
https://8,195.85
https://54,259.74
https://8,932.45
https://53,407.17
https://7,736.50
https://59,728.97
https://7,754.28
https://59,424.77
https://9,148.08
https://61,250.00
https://6,354.56
https://55,135.47
https://5,871.54
https://54,213.14
https://6,898.76
https://56,365.24
https://9,138.01
https://48,736.10
https://8,719.61
https://45,796.33
https://9,224.04
https://49,838.52


Example Box 5 

First-Year Sophomore Junior Senior 

Female GPA ¢ ¢ ¢ 

Male GPA ¢ ¢ ¢ 

Throughout the remainder of this chapter, we will discuss two statistical 

procedures that could be applied to our case study: a t-test comparing male and female 

salaries, and a one-way ANOYA comparing faculty salary across the three divisions. In 

each of these analyses the independent variable(s) are independent groups factors, as 

faculty are either male or female and are associated with only one department. It is 

important to note that an independent groups Factorial ANOYA is the most appropriate 

design for this research question. The explanation for this point will be documented 

throughout the remainder of the discussion. However, let's  back up and start with the 

more familiar descriptive statistics and t-test procedures. 

Analysis of Data: 

In the above described case study, our department chair has begun the process of 

exploring the descriptive statistics of faculty salary data. Table 3 contains the mean, 

standard deviation and sample size for the salaries of male and female assistant professors 

in the Humanities, Natural Sciences, and School of Business. The overall mean for 

assistant professors is $53 ,850.5 1 with a standard deviation of $8,824.46. Female 

assistant professors in the Business School have the highest mean salary (x = 6 1 e,250) of 

all the subgroups. However, there are only 3 female assistant professors in the Business 

department. From our previous discussion of measures of central tendencies, we are 

aware that we must probe deeper than a simple examination of the group means. As is 

evident from this discussion, we are still left with the same basic questions defined in our 

case study. Are these differences meaningful or can they be attributed to randomly­

occurring factors? To answer this question we must use inferential statistical techniques. 

Inferential statistical procedures allow us to draw conclusions about a population based 

upon sample data. 

T-T EST 

A basic question of our case study is whether or not there are differences in the 

salaries of male and female assistant professors . In other words, is the university 

perpetuating the national trend of paying women less than men for the same job? In 

essence the answer to that question lies in the comparison between the mean salary for 

male (x = 54,259.74) and female (x = 53,407 . 1 8) assistant professors. Certainly the 

average salary for male assistant professors is higher than the mean for females, but is the 

magnitude of the difference between the two means significant enough to be attributed to 

gender bias? Otherwise, the difference will be attributed to randomly-occurring factors. 

The calculation and interpretation of an independent groups t-test comparing male and 

female salaries will answer this question. Before calculating and interpreting this statistic, 

let's review the basic assumptions of the t-test. 
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Background & Basic Assumptions 

Aet-test detennines whether the difference between two group means is likely to 

have occurred by chance or whether the difference is attributable to the levels (or groups) 

of the independent variable. In order to calculate a t-test, the research design must contain 

only one dependent variable (in this case, salary) measured on an interval or ratio scale 

and one independent variable which has only two levels (in this case, gender). The 

independent variable may either be an independent groups or repeated measures factor (in 

this case, independent groups). Thus there are two versions of the t-test: independent 
!groups and repeated measures.e

Another assumption of the independent groups t-test is that the scores within 

each level of the independent variable are independent of one another. In our analysis and 

most applications, independent observations are assumed when each subject supplies only 

one score. However, when an independent groups design is used, the population 

characteristics of the two distributions may be quite different. The t-test uses the 

assumption of homogeneity of variance which states that the variances of the two levels of 

the independent variable must be equal. Remember in Chapter I ,  an illustration was 

provided where the measures of central tendency for two samples were the same, yet the 

dispersion of the scores was quite different. In this case if we were comparing the means 

of these two groups we might have violated this assumption. Numerous tests are available 

for evaluating this assumption. SPSS calculates the Levene test of homogeneity of 

variance. Norusis ( 1 993) described this procedure as "less dependent on the assumption 

of normality than most tests" (p. 1 87). The null hypothesis for this test is that the groups 

(i .e. ,  levels of the independent variablee) come from populations with equal variances . 

The Levene statistic is an F ratio and interpretation of the significance of the F value will 

determine whether you have met or violated the assumption.2 In lieu of this or other 

tests, Grimm ( 1 993) suggested the following rule of thumb to evaluate this assumption: 

"Examine the sample variances: if one of them is four times larger than the other, you 

will probably violate the assumption" (p. 1 82). 

Overall, the t-test is a robust test. This implies that the test is not always 

adversely affected when one of the assumptions has been violated, particularly if the two 

sample sizes (i .e. ,  the levels of the independent variable) are equivalent (n! = ne) and the 
2e

overall sample size is large (N > 30) (Grimm, 1993;  Triola, 1 992). Yet these assumptions 

should not be ignored. In fact the discovery that the variances between the two groups are 

significantly different from one another can be an interesting finding, even if the means of 

the two groups are not significantly different. If the assumption of homogeneity of 

Some texts and software packages refer to independe,,' �roups as independent samples 
and repeated measures as dependent samples, paired es, or correlated samples. 

Thus, non significance equates to meeting the assumption of homogeneity of variance 
and significance indicates a violation of the assumption. 
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variance has been violated, there is a statistical adjustment to the t-test formula, which is 

reported by most statistical software packages, including SPSS.  In SPSS, the equal 

variances t-test is used with homogenous variances, and the unequal variances t-test for 

heterogeneous variances. Finally, if the group sample sizes are not equivalent, the overall 

sample size is small, or one or more of the assumptions has been violated, a test of 

significance that does not make assumptions about the population distributions should be 

used. These tests are referred to as non-parametric tests. A discussion of equivalent non­

parametric statistics appears at the conclusion of this chapter. 

T-Test Analysis: 

In this analysis, the dollar amount of the annual salary of assistant professors 

will be used as the dependent variable. The independent variable gender is an 

independent groups factor with two levels: male and female. An independent groups t-test 

was calculated comparing the mean salary for male and female assistant professors. The 

T-TEST procedure from SPSS (Norusis, 1993) was used to calculate this statistic. The 

output from this t-test procedure may be found in Table 4. 

In reviewing the output in Table 4, Levene's test of equality of the variances 

indicates that the assumption of homogeneity of variance has been met, since the 12 > .05 . 

Therefore, the t-test formula that should be interpreted is labeled for equal variances. The 

t- test (-.50) is calculated by dividing the mean difference3 (-852.5654) by the standard 

error of the difference ( 1 7 12.777) labeled SE of DIFF on the printout. The significance of 

the t-test was reported as .620. Since this value is clearly greater than the normal alpha 

level of .05 , we must conclude that no significant difference exists between the means of 

the male and female assistant professors. Although a difference exists between the mean 

sample salaries of male (x = 54,259.74) and female (x = 53,407 . 1 8) assistant professors, 

this difference is not large enough to be attributed to anything more than random 

occurrences. 

In the calculation of the t-test, SPSS always subtracts the mean of the group coded 2 
from the mean of the group coded 1 .  The negative mean difference was created because 
females were coded as 1 and have a lower mean than the males who were coded 2. 
Thus, a negative mean difference indicates that the second group has a higher mean 
than the group coded 1 .  
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Table 4 

SPSS Output from t-tests for 

Independent Samples of GENDER 

Number 

Variable of C a s e s  Mean SD S E  o f  Mean 

SALARY 

F emale 48 53407 . 1750 8 9 32 . 451 1289 . 288 

Male 52 54259 . 7404 8195  . 847 1 13 6  . 560 

Mean Dif f erenc e = -852 . 5 654 

Levene ' s  T e s t  f o r  Equality of Varianc e s  : F =  . 631 p= . 42 9  

t - t e s t  
Var iances 

for Equa l i ty of Means 
t -va lue d f  2 -Ta i l  Sig SE of Di f f  C I  

9 5 %  
for Di f f  

Equal 
Unequal 

- . 5 0 
- . 5 0 

9 8  
9 5  . 3 6 

6 2 0  
6 2 1  

1 7 l 2  . 7 7 7  
1 7 l 8  . 7 3 0  

( - 4 2 5 2  . 2 8 ,  2 5 4 7  . 1 4 8 ) 
( - 4 2 6 5  . 4 4 ,  2 5 6 0  . 3 1 0 ) 

Thus, we can refute the claim that the university is perpetuating the national trend of 
paying women less than men for the same job. 

One-way ANOVA 

The next basic question of our case study is whether or not there are differences 

between the mean salaries of assistant professors in the humanities (x = 48,736. 1 0),  

natural sciences (x = 55, 1 35 .47) and business (x = 59,728.97) divisions. Again, the answer 

to this question is found through a comparison of these three means. Certainly, a large 

difference exists between the average salary for assistant professors in the humanities and 

business divisions, and less of a difference between the natural sciences and business, and 

humanities and natural sciences. However, to establish what is a large enough difference 

to be attributed to a shift in priorities within the institution, we must apply inferential 

statistics .  The calculation and interpretation of a one-way independent groups ANOVA 

will answer this question. Before calculating and interpreting this statistic, the basic 

assumptions of the one-way ANOVA will be reviewed. 

Background & Basic Assumptions: 

As was illustrated, t-test is a common statistical procedure used to test the 

difference between the means of just two groups. ANOVA allows comparison among 

more than two sample means. One-way ANOVA deals with a single categorical 

independent variable (or factor). In order to perform a one-way ANOVA, the research 
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design must contain only one dependent variable measured on an interval or ratio scale. 

The independent variable is used to classify subjects or observations into separate 
categories or groups. The research design for the one-way ANOYA must contain only one 

independent variable and that variable should have three or more levels.4 

Often individuals ask if they can perform multiple t-tests to make the paired 
comparisons between the levels of the independent variable instead of a one-way 

ANOYA.5 Given that a t-test is a special case of ANOYA in which the independent 

variable has only two levels and that the squared t-value (t2) is equivalent to the F-ratio for 
determining statistical significance between two groups using ANOYA, there would seem 
to be logical basis for such a procedure. However, this procedure is not statistically 
appropriate. The use of multiple t-tests leads to a loss of any interpretable level of 
significance (Le., alpha (27) level). In ANOYA, the alpha level is used to make decisions 

regarding statistical significance of the differences between the group means. Thus, when 
the alpha level is set at .05 and a t-test is conducted, there is a probability of making an 
error by stating that differences existed between the group means, when in reality they did 

not differ. The probability of this type of error for that one test is 5 percent. When a 
series of t-tests is run, the probability of mistakenly stating that differences existed is 

inflated. In fact, Grimm ( 1993) stated that if three t-tests are performed, as in our case 
study, a .05 alpha level would be inflated to . 14 and if 10 tests were performed the same 

alpha (.05) would be inflated to .40. Thus, you would have a 40 percent chance of finding 
differences that look real, but in fact are due to random occurrences. 

From a statistical viewpoint, the same three assumptions that were appropriate 
for the independent groups t-test are appropriate for the one-way independent groups 
ANOYA. First, the dependent variable must come from an essentially normally­
distributed population. Second, the scores within each level of the independent variable 
are assumed to be independent of one another. This assumption of independent 
observations is only appropriate for an independent groups analysis and is assumed 

through the research design. Finally, the variance of the dependent measure should be 
essentially constant for all categories or groups of the independent variables . A term for 
this second assumption, if met, is homogeneity of variance. Again, SPSS calculates the 

Levene test of equality of variances to check this assumption. Unlike the t-test, if this 
assumption is violated, no statistical adjustment can be made. Therefore the researcher 

would determine which variances are distinctly different, report the violation, and proceed 
with the ANOYA procedure assuming that the test was robust. 

If there are only two levels to the independent variable then a t-test would be run. Also, 
if there is more than one independent variable then a factorial ANOVA would be more 
appropriate. 

In our example this would be equivalent to running three t-tests; comparing: 
Humanities versus Business, Humanities versus Natural Sciences, and Natural 
Sciences versus Business. 
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The calculation of the ANOVA centers around the calculation of the F-ratio. In basic 

terms, the F-ratio is computed as follows: 

variance between groups 
F = 

variance within groups 

This computation requires the calculation of three sources of variance (sum of squares, 

[SS)): between groups, within groups, and total. These three sources can best be seen 

graphically in Figure 8. Each of these sources of variance has degrees of freedom 

associated with it. Degrees of freedom are adjustments that are made to sources of 

variation based on either sample size or the number of levels in the independent variable 

or both. The mean square (MS) of the variance between and within samples is equivalent 

to the sum of squares (SS) between and within groups divided by its associated degrees of 

freedom. The calculations of the one-way ANOVA can best be summarized in the 

common table format displayed in Table 5 .  

Figure 8 

ANOVA Sources of Variation 

Total 

Table 5 
Summary Table for ONE-WAY ANOVA 

SOURCE SS df MS F p 

B etween Groups k - l  

Within Groups N-k 

Total N - l  

Note: K represents the number o f  levels o f  the independent variable and N ,  the total 

sample size. 
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The F-ratio directly addresses the hypothesis as to whether or not the means differ across 

observation groups (Le. ,  levels of the independent variable). In generic form, the null 

(He) and alternative hypotheses (HI) could be stated as follows: 

H : All the means are equal.o 
HI : At least two of the means are different6 

If the F-ratio is non-significant, we accept the Null hypothesis (Ho), and our analysis is 

completed by reporting that no significant differences exist among the three means. But if 

the F-value is significant, then there are a number of procedures called post-hoc 

comparisons or multiple range tests that are used to find out where the significant 

differences lie. For example, are the differences between Humanities and Business, 

Business and Natural Sciences, Natural Sciences and Humanities, or all three? 

The use of a t-test for post-hoc comparisons is still not statistically appropriate 

because the same problem that we discussed earlier with the alpha level still exists. 

Appropriate methods include Newman-Kuels, Thkey's Honest Significant Difference, 

Scheffe, and several others. Each of the tests is calculated in a slightly different manner 

and is conceptually different from the others in their treatment of alpha. The Scheffe 

method is the most conservative, which means that it identifies fewer significant 

differences. Newman-Kuels is more liberal, identifying more significant differences, and 

Tukey's  falls between the other two. Let us now tum to an analysis of our case study data 

to illustrate these post-hoc comparisons methods. 

One-way ANOVA Analysis: 

From our case study example, we will examine the salary of assistant professors 

based on the division to which they are assigned. Our example has three divisions: 

Humanities, Natural Sciences, and Business. All assistant professors are affiliated with 

only one division; thus our design is a one-way ANOYA with one independent groups 

factor (i.e., division). The dependent variable for this analysis is the dollar amount of the 

annual salary of the assistant professors. The ONEWAY procedure from SPSS (Norusis, 

1993) was used to calculate the F-test statistic. The output may be found in Table 6. 

In reviewing the output in Table 6, the Levene test for the assumption of 

homogeneity of variances indicates that this assumption has been met with 11 > .05 .  

Notice that the SPSS output follows the common ANOYA table format described above. 

The significance of the calculated F ratio ( 1 3 .4964), labeled F Prob. , was .000, indicating 

that a significant difference exists between the mean salaries of assistant professors across 

Commonly researchers describe the alternative hypothesis as all of the means are not 
equal. However, Grimm (1993) indicates that this wording is technically incorrect, due 
to the fact that a significant difference between only two means will result in the 
rejection of the null hypothesis. Thus, the wording at least two of the means are 
different is recommended to represent HI . 
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the three divisions (Le. ,  Humanities, Natural Sciences, & Business). While this fmding 

indicates that there is a very small chance that the differences in the mean salaries 

occurred just by chance, and that an explanation other than random differences must be 

considered, it does not identify specifically where the differences are found. To answer 

this question, post 

Table 6 

SPSS Output from the One-way ANOVA 

Comparing Salary by Division 

O N E  W A Y  

Var i ab l e  S a l ary 

By Var i ab l e  Divi s i on 

Ana ly s i s  o f  Var i ance 

Sum o f  Mean F F 

Source D.F. Squares S quare s Rat i o  Prob. 

Between Group s 2 1566104872 783052436.0 13 . 50 .0000 

Wi thin Group s 9 7  5627873169 58019 311.02 

Tot a l  9 9  719 3 978041 

Levene Te s t  for Homogene i ty o f  Var i anc e s  

S t a t i s t i c  d f l  df2 2 - t a i l S i g. 

1. 3380 2 9 7  267 

hoc multiple comparisons tests must be run. To illustrate the similarities and differences 

between the various forms of multiple comparisons procedures, three different multiple 

range tests were run simultaneously on these data: Student Newman Kuels, Tukey's , and 

Scheffe. The SPSS output reporting the results of these procedures is found in Table 7.  

To interpret this output refer to the chart with the asterisks. The asterisks (* ) indicate 

where significant differences have been found. When reporting the findings you must 

refer to your coding scheme for the independent variable. In our analysis, Humanities 

was coded 1, Natural Sciences - 2, and Business - 3 .  

Using our case study data, the Student Newman Kuels and the Tukey's-B 

procedures yield the same findings. Interpretation of these analyses indicate that the 

salaries for assistant professors across all divisions are significantly different from each 

other. Assistant professors in the Business division are paid the most, followed by Natural 
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Table 7 
SPSS Output from the Multiple Range 

Post Hoc Comparisons 

Mu l t ip l e  Range T e s t s :  Student -Newman-Keuls test signi ficance l evel . 0 5 0  

T h e  di f f e rence between two means i s s i gni f i c ant i f 
MEAN ( J )  -Mean ( I )  >= 5 386  . 06 1 2  * RANGE * SQRT ( l / N ( I )  + l / N ( J )  

wi th the f o l l owing value ( s )  f o r  RANGE : 

S t ep 2 3 
RANGE 2 . 82 3 . 3 7 

( * ) Indi c a t e s  s i gn i f i cant d i f ferences wh i c h  are s hown in the l ower t r i ang l e  

G G G 
r r r 
p p p 

2 3 
Mean DEPT 

487 3 6  . 1 0 3 0  Grp 1 
5 5 4 1 3 5 . 4 6 9 4  Grp 2 

5 9 7 2 8 . 9 7 2 2  Grp 3 

Mu l t i p l e  Range Te s t s  : Tukey-B test with signi ficance level . 0 5 0  

The di f f e rence between two means i s s i gn i f i cant i f 
MEAN ( J )  -MEAN ( I )  >= 5 386  . 06 1 2  * RANGE * SQRT ( l / N  ( I )  + l / N ( J )  ) 
wi t h  the f o l l owi ng value ( s )  for RANGE : 

S t ep 2 3 
RANGE 3 . 09 3 . 3 7 

( * ) Ind i c a t e s  s igni f i cant di f fe renc e s  wh i c h  are shown i n the l owe r t r i angle 

G G G 
r r r 
p p p 

1 2 
Mean DEPT 

487 3 6 . 10 3 0  Grp 1 
5 5 4 1 3 5  . 4 6 9 4  Grp 2 

5 9 7 28 . 9 7 2 2  Grp 3 

Mu l t i p l e  Range Te s t s  : Scheffe test wi th signi f icance level . 0 5 

The d i f f e rence between two means i s s i gn i f i c ant i f 
MEAN ( J )  -MEAN ( I )  > = 5 386  . 06 1 2  * RANGE * SQRT ( 1 / N ( I )  + l / N ( J )  )
w i t h  the f o l l owing value ( s )  f o r  RANGE : 3 . 5 2 

S t ep 2 3 
RANGE 3 . 09 3 . 3 7 

( * ) I nd i c a t e s  s igni f i cant di f fe renc e s  wh i c h  are s hown i n the l ower t r i angle 

G G G 
r r r 
p p p 

1 2 3 
Mean DEPT 

487 3 6 . 10 3 0  Grp 1 
5 5 4 1 3 5 . 4 6 9 4  Grp 2 * 

5 9 7 28 . 9 7 2 2  Grp 3 
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Sciences, and then Humanities. However, when interpreting output from the more 

conservative procedure, Scheffe, the mean salary for assistant professors in the 

Humanities division was found to be significantly lower than either the Business or 

Natural Sciences divisions, but no significant difference was found between the Business 

and Natural Sciences divisions. Given the discrepancy between these procedures the 

researcher has a dilemma: which findings should be reported? Even though both the 

liberal (Student Newman Kuels) and moderate (Tukey's B) procedures replicate each 

other's findings, in this instance erring on the side of conservatism might be wise, given 

the sensitive nature of the topic. Thus, the results of the Scheffe procedure are probably 

more appropriate to report. No matter what analysis is reported, this is disturbing news 

for the institution. Certainly one possible interpretation of these findings is the claim of 

the chair of the Humanities division that the institution is de-emphasizing its traditional 

commitment to the liberal arts and is moving toward a pre-professional orientation. Since 

faculty salaries may vary based on many factors, the researcher should be more complete 

and thorough in exploring all possible interpretations. A model with only one 

explanatory (i .e . ,  independent) variable is certainly not comprehensive, and further 

analysis and investigation is definitely warranted. Some other factors to consider in salary 

equity studies are length of service, years since Ph.D. ,  Ph.D. origin, and number of 

publications . 

Other Statistical Procedures for Comparing Group Means 

To this point in our analysis of the case study data, we have found no differences 

in the salary of assistant professors based on gender and found significant differences 

between salaries across the three divisions. Yet several questions remain unanswered. 

Do gender and division interact with each other with regard to salary? Are there other 

independent variables, such as length of service, which should be included when 

examining differences in faculty salaries? For our purposes, in reviewing basic statistical 

procedures we have proceeded as far as the limits of this text will allow. However, basic 

descriptions of other statistical procedures that may be used to compare group means are 

presented to acquaint you with some of the more advanced designs. 

Factorial ANOVA: 

As was illustrated, the t-test allows comparison between two group means, while 

the one-way ANOVA has an advantage over a t-test: being able to make comparisons 

among more than two sample means from one independent variable. A factorial ANOVA 

is used when the research design includes more than one independent variable, each with 

any number of levels (i .e. ,  two or more). Thus, factorial ANOVAs have an inordinate 

number of possible designs. Further, all factorial ANOVA models are labeled by the 

number of levels in each of the independent variables . A logical progression from our 

case study would be to extend the previous one-way ANOVA and add an additional 

independent variable that represents the gender of the professor. This particular factorial 

ANOVA is labeled as a 2 X 3 with two independent groups factors (i .e . ,  gender - 2 levels 

and division - 3 levels). In our case study, this analysis may have been the most logical 

and appropriate statistical technique to calculate with the exception of one limitation, the 
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sample sizes. If you refer back to Table 3 ,  you will be reminded of the fact that the 

sample sizes between the genders in each division was quite discrepant. For example, the 

number of female Business faculty was 3, while the number of female Natural Science 

faculty was 2 1 .  This small 'cell size' is problematic to the calculation of this ANOVA. As 

a result, collapsing to a 2 X 2 ANOVA by dropping the Business department would be 

recommended. A factorial ANOVA allows the researcher to test the impact of two 

different portions of the design, the main effects and the interaction. The main effects 
in a factorial design are similar to the univariate tests we just calculated. For our case 

study, the main effects would compare the impact of gender and division on the salary of 

assistant professors. The interaction or differential effect tests to determine if a different 

outcome is present across one or more levels of the two independent variables. Hence, the 

name interaction; do the two independent variables interact? For example, do female 

Business professors make more than male Humanities professors? Often, this question is 

the more interesting and most relevant to our research. In our case study, the analysis of 

the interaction would examine whether or not significant salary differences exist between 

male and female faculty members in each of the three divisions. In other words, does a 

differential effect exist between gender and division with regard to salary? 

Analysis of Covariance (ANCOVA) : 

Analysis of Covariance is really an advanced form of ANOVA. An attempt will 

be made to describe a rather complex statistical procedure in rather basic terms. ANOVA 

procedures are grounded in linear regression. However, the procedure does not attempt to 

measure the fit between variables; rather, it seeks to determine the probability that a 

predictor variable could yield results different from simple random selection (Iverson & 
Norpoth, 1 976). ANCOVA is an extension of the linear model for ANOVA. The most 

common application of ANCOVA is to examine the relationship between a continuous 

dependent variable and a categorical independent variable while controlling for the effects 

of a second continuous variable (Le., nuisance variable) . In essence, ANCOVA examines 

differences in the dependent variable among categories of the independent variable 

controlling for differences in the nuisance variable (covariate). For example, in 

institutional research it may be interesting to see differences in SAT scores between the 

genders after controlling for the level of IQ of the student. In our case study, we could 

control for the number of years of teaching. Years of experience is a variable that should 

be partialled out of salary in order to more effectively compare mean salaries. 

While ANCOVA is generally highly regarded as a means of improving research 

design, one must be careful to ensure that ANCOVA is best suited to your study. When 

deciding whether or not to include a covariate, two questions must be considered. First, 

does a strong relationship exist between the covariate and the dependent measure (r =.40 

or greater)? Second, is there little to no relationship between the covariate and the 

independent variable? In order for this analysis to be appropriate the answer to both of 

these questions must be yes. In order to warrant the partialing out of the impact of this 

nuisance variable (covariate), a strong relationship must exist between the covariate and 

the dependent variable. However, if a relationship exists between the covariate and the 

independent variable, then it becomes impossible to remove the effects of the covariate 
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from the analysis. Another word of caution: using a covariate is not necessarily the best 

method for dealing with differences in a known group. From a research design 

standpoint, it is far better to randomly assign subjects, if possible. Remember, Garbage 

in, Garbage out; no statistical procedure can save an inferior research design. 

Multivariate ANalysis Of VAriance (MANOVA) : 

ANOVA is used to allow comparisons of a single dependent measure among two 

or more levels of an independent variable or variables. MANOVA is used when there is 

more than one dependent variable, and it is inappropriate to do a series of univariate tests. 

Again, please be reminded that the MANOVA procedure is an advanced and complex 

statistical procedure. Only a brief description of the purpose of this statistical procedure 

will be explored. 

Two major reasons exist for performing a MANOVA as opposed to several 

univariate ANOVAs for each dependent variable. First, we often have several tests that are 

designed to measure various aspects of one overlying factor. For example, math and 

verbal SAT scores are both measures of a high school student's academic achievement. In 

other words, math and verbal SAT scores are often highly correlated; hence, if you find a 

significant difference between groups on math SAT you would most likely find one for 

verbal SAT. Testing both separately with univariate statistics is not the best approach 

because the two analyses are not independent. Secondly, the MANOVA procedure 

provides the researcher with the ability to study the interaction among the dependent 

variables. Just as the interaction among independent variables in a factorial ANOVA 

provides new information, which could not be uncovered by calculating separate tests, 

looking at two or more dependent variables simultaneously in a MANOVA provides more 

information than doing a series of univariate analyses . 

Non-parametric Tests of Mean Differences: 

When a researcher has violated the assumptions of parametric statistics, several 

non-parametric equivalent tests exist for comparing group means. Within the context of 

this text no attempt will be made to review all of these non-parametric procedures; rather 

a brief description of these procedures will be provided with sources of reference for 

further information. Within the context of Institutional Research, non-parametric statistics 

are often warranted because of the use of ordinal Likert scales on many of our survey 

instruments . 

The non-parametric equivalent of the independent groups t-test is the Mann 

Whitney U test. The Wilcoxon Signed Rank test is the equivalent non-parametric measure 

for the repeated measures or paired t-test. Instead of the one-way independent groups 

ANOVA, a researcher should utilize the Kruskal Wallis test under non-parametric 

conditions. Finally, the non-parametric equivalent for the one-way ANOVA with repeated 

or dependent samples is the Friedman's ANOVA by Ranks procedure. No equivalent non­

parametric procedures exist for Factorial ANOVA, ANCOVA, or MANOVA. Most basic 

statistical texts (e.g . ,  Grimm, 1993;  Triola, 1994) provide documentation on these basic 
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non-parametric statistics. For a more complete reference for non-parametric statistics, 

refer to Conover ( 1980), Mostella and Rourke ( 1973) or Siegal ( 1956). 
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Chapter Three 

Correlation: Measuring the Relationship Between SAT and First-Year GPA 

Case Study: 

Each year admissions officers struggle to recruit qualified students for 

enrollment to institutions of higher education. At the same time, faculty may be 

questioning the quality of entering first-year students. Often admissions personnel are at a 

loss to determine those qualities that are most indicative of success at their institution. 

Historically, SAT scores have not shown strong predictive validity for first-year grade 

point average at many institutions. High school grade point average and admissions 

ratings have shown stronger associations with academic performance. Yet many 

institutions have found the need to rely more heavily on qualitative data, such as 

recommendations, essays, and interviews. Of course, the analysis of qualitative data is 

much more subjective, time consuming and costly than quantitative data. 

The case at hand involves a private college with a variety of undergraduate 

programs centered around a basic liberal arts orientation. Recently, the faculty have 

raised questions about admissions standards and the quality of entering students . Faculty 

concerns are centered on decreasing academic performance. Many faculty fear the time 

has come to adjust the curriculum or a higher percentage of students will be receiving 

lower grades.  The Director of Admissions has asked for your assistance in determining 

what are the best quantitative measures available to admissions officers for assessing the 

potential for academic success within the current curriculum. 

The focus of this case study is to examine the 635 students who recently 

completed their first year at this institution and determine those variables in the 

admissions file that are most strongly related to academic success. From the student 

academic data base academic success is defined as the life-to-date grade point average 

(LTDGPA) of these students who recently c<?mpleted their first year. From the admissions 

file, quantitative measures for these students are extracted and matched to their LTDGPA. 

These quantitative measures include: high school grade point average, verbal SAT, and 

math SAT. This case study will be used to illustrate the application of correlational 

analyses to measure the relationships among these variables. 

Background: 

A correlation coefficient measures the strength and direction of the linear 

relationship between two variables. Correlational procedures measure how one variable 

changes in relation to another. Examples in Institutional Research might include 

measuring the relationship between the size of the endowment of a college and the 

number of alumni, or the amount of money a college spends on recruiting and the number 

of applicants . 

Before proceeding to the calculation of the correlation coefficient and our case 

study, it is important to describe some important aspects of this procedure. First, the 

correlation coefficient only measures a linear relationship. Any relationship that may be 
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curvilinear or otherwise non-linear will produce a correlation coefficient that is weak or 

non- significant. As a result, always draw a graph (scatterplot) of your data before 

calculating your correlation coefficient. The graph will provide you with some visual 

clues as to whether or not the relationship between your variables is linear. 

All correlation coefficients range in value from + 1 .0 to - 1 .0 and measure two 

aspects of the relationship between the variables: direction and strength. The strength of 

the relationship measures how closely the data match a linear relationship. A correlation 

coefficient of A 1 .0 indicates that the data are perfectly linearly related, while a 

coefficient of 0 implies that no linear relationship exists . ·  The sign of the coefficient 

indicates the direction of the relationship. A positive coefficient indicates that as the value 

of one variable increases the value of the other variable also increases. On the other hand, 

a negative coefficient indicates that as the value of one variable increases the value of the 

other variable decreases, an inverse relationship. 

A correlation coefficient of + 1 .0 indicates a perfect positive linear relationship, 

while a correlation coefficient of - 1 .0 indicates a perfect negative linear relationship. 

Rarely if ever will a researcher uncover a correlation coefficient of + 1 .0 or - 1 .0. 

Relationships are not that clearly defined in the social sciences. The combination of 

strength and direction best describes the relationships between variables.  However, 

strength and direction are two independent qualities. A correlation of +.40 has equal 

strength but opposite direction to a coefficient of - .40. A sample of these relationships is 

best shown graphically in Figure 9. In some instances, the coding of the data may create 

a negative relationship. For example if high school class rank for applicants is correlated 

with SAT scores, a negative relationship may logically result. Normally, class rank is 

coded so that a 1 indicates first in the class.  Since SAT is coded so that the higher the 

score the better, a negative relationship may be found between these two variables . 

Pearson Correlation Coefficient 

Basic Assumptions: 

In this case study, the relationship between our two variables will be measured 

by calculating the Pearson Product-Moment Correlation Coefficient (PPMCC). The 

PPMCC is a parametric statistic. Therefore, in order to utilize this procedure both 

variables must be interval or ratio level of measurement, the distribution of scores should 

be essentially normal, and the sample size should be at least 30. All basic assumptions are 

met in our case study. 

Remember, a coefficient of 0 does not rule out the possibility of a curvilinear 
relationship. 
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Figure 9 

Correlation Coefficients: Strength & Direction 

Perfect Positive Ralatlonshlp Perfect Negative Relationship 
r .. + 1 .0 r .. - 1 .0 

5 

0 0 2 4 6 8 1 0  1 2  

Strong Positive Relationship 
r .. + .9 

20 

1 5  

1 0  

5 

0 
0 2 4 6 8 1 0 1 2  

Moderate Positive Relationship 
r = + .7 

0 2 4 

• 
1 5  

• 
1 0  

• 
5 

• • o 
o 2 4 6 8 1 0  1 2  

1 4  1 6  

20 

1 5  

1 0  

5 

0 

20 

6 8 1 0  1 2  1 4  1 6  

N o  Relationship 
r .. . 0 

• 

0 2 4 6 8 1 0  1 2
1 4  1 6  

Strong Negative Relationship 
r = - .9 

20 

1 5  

1 0 

5 

0 

5 

0 
1 4  1 6  

0 2 4 6 8 1 0  1 2  

Moderate Negative Relationship 
r = - .6 

1 5  

1 0 

5 

0 

• 

• 
0 2 4 6 8 1 0  1 2  

N o  Linear Relationship 
r = O 

• 

• 
• 

o 2 41 4  1 6  

1 4  1 6  

1 4  1 6  

1 5  

1 0  

5 

6 8 1 0  1 2  1 4  1 6  

3 8  



R = r===============� J 

Analysis of Data: 

In this analysis, the two variables are high school grade point average (HSGPA)2 

and first-year GPA (LTDGPA). Again, the PPMCC was calculated to measure the 

strength and direction of the relationship between these two variables. The 

CORRELATIONS procedure from SPSS (Norusis, 1993) was used to calculate this 

statistic. For your reference, the formula for the PPMCC is listed below in Table 8 with 

the output from the SPSS procedure. 

Table 8 

Formula for 

Pearson Product Moment Correlation Coefficient (pPMCC) 

-
NIXY - (IX) (IY) 

[NIX2 (IX)2] [NIy2 -(IY) 2] 
SPSS Output from 

Correlations Procedura (pPMCC) 

- - Corre l a t i on Coe f f i c i ents - -

LTDGPA HSGPA VEFB_SAT MATH_SAT 

LTDGPA 1 .  0000 . 2 3 4 2  . 1 65 6  . 1 3 55 strength & direction 

( 6 3 5 )  ( 6 2 1 )  ( 6 1 5 )  ( 6 1 5 )  It of subj ects 

p = p = . 000 p = . 000 p = . 001 signi  ficance 

HSGPA . 2 3 4 2  1 . 0000 . 1003 - . 09 9 3  

( 6 2 1 ) ( 6 2 1 )  ( 5 6 6 )  ( 5 6 6  ) 

p = . 000 p = p = . 895 p = . 018 

. 1 3 55 . 100 3 1 . 0000 . 2 54 9 

( 6 1 5 )  ( 56 6 )  ( 6 1 5 )  ( 6 1 5 )  

p = . 000 p = . 895 p = p = . 000 

. 1 3 55 - . 0 9 9 3  . 2 5 4 9  1 . 0000 

( 6 1 5 )  ( 5 6 6 )  ( 6 1 5 )  ( 6 1 5 )  

p = . 00 1  p = . 018 p = . 000 p = 

( C oe f f i c i ent / ( Ca s e s ) / S i gn i f i canc e ) 

• i s pr inted i f a c oe f f i c i ent c annot be c ompu t ed 

Reviewing the SPSS output provides a correlation matrix. The correlation 

coefficient between LTDGPA and high school grade point average (HSGPA) is the 

strongest reported (r = .234). While total unanimity does not exist with regard to 

Depending on the variety of backgrounds of the entering first-year students, you may 
wish to convert raw high school grade point averages to standardized scores by 
calculating Z scores. 
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interpreting correlation coefficients, some authors of basic statistics texts describe 

correlations of 0 to .29 as weak, .30 to .59 as moderate, and above .60 as strong (Levin & 
Fox, 1994). Thus, our correlation is weak. Also, the relationships between LTDGPA and 

SAT scores are weak (verbal, r = . 1 656; math, r = . 1 355). However, the question still 

remains, does a significant association exist between either high school grade point 

average or SAT scores and LTDGPA? In order to generalize about this relationship, a test 

of significance should be performed. The SPSS printout reports a significant positive 

linear relationship between all of these variables. This test of significance determines if 

the relationship is significantly different from o. As a result, many moderate to weak 

correlations with a decent sample size (n > 100) will be statistically significant.3 

In assessing the true strength of the relationship between the two variables, many 

researchers will calculate R2, which is determined by squaring the correlation coefficient. 

R-squared is associated with regression analysis and determines the proportion of the total 

variation in the LTDGPA scores that can be explained by either high school grade point 

average or SAT scores. Also, 1 - R2 represents the proportion of this variance that is left 

unexplained or is due to other factors. In this analysis, 5 .48% ( .234 * .234) of the 

variability in the LTDGPA scores can be explained by the high school grade point average 

of first-year students. Therefore, while a significant relationship (r = .234, II = .00) does 

exist between the two variables, a large amount of the variance (94.5%) in LTDGPA 

remains unexplained or is due to other factors. As a result, the researcher should 

definitely proceed with caution in describing this relationship . SAT scores were not 

stronger predictors of first-year grade point average. The R2 for verbal SAT is .027(2.7% 

explained) and for math .018 0 .8% explained). 

Limitations to Correlational Analyses: 

When interpreting correlation coefficients, several limitations should be 

considered, of which we have so far discussed two. First, the PPMCC only measures 

linear relationships; secondly, the test of significance for the correlation coefficient only 

determines whether or not the correlation coefficient is significantly different from O. 
Beyond these two limitations, the researcher needs to be sure that he or she does not imply 

any cause and effect relationship between the two variables when discussing correlational 

findings.  Remember, correlation measures the strength and direction of the relationship 

found between two variables. The researcher makes no attempt to manipulate or control 

these variables in any manner. Thus, no cause and effect conclusions may be drawn. Too 

many other unexplained or uncontrolled factors may be influencing this relationship, and 

you did not measure or control for these factors. Limit the wording of your interpretation 

to terms such as association, relationship, or link and avoid terms such as cause, effect, or 

difference. For example in this case study, an appropriate conclusion statement might 

For example, a correlation coefficient of greater than or equal to A . 196 with a sample 
size of 100 will be significant. In Institutional Research, larger sample sizes often exist, 
which does in some cases assist with statistical power. 
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read: a minimal positive association was found between high school GPA and first-year 

GPA. 

Another factor that may hinder in the interpretation of correlation coefficients is 

the presence of an outlying score. An outlier is a score that falls outside of what would be 

considered the normal range of data values.4 The presence of the outlying score may 

serve to positively or negatively inflate the value of the correlation coefficient. Often, this 

outlying score gives the relationship an added anchor point to assist in the fit to a linear 

relationship. A picture is worth a thousand words, so refer to Figure 10. In the first graph 

the value of the correlation coefficient is .608, and is found to be significant (12 = .01) .  

Yet, when the outlier is removed, the value of the coefficient is - . 196 and is non­

significant (12 = .47).  Remember, always graph your data; without the graph the outlier 

may go unnoticed. 

Figure 10 

Interpreting Correlation Coefficients: The Problem with Outliers 

Relationship with Outlier Relationship without Outlier 

r =  .6077 r = -. 196 
20 

• • 
15 

• 

10 

•• 5 
• 

• .. • 
0 

o 5 10 15 20 25 30 35 0 2 4 

Similarly, having two groups that are known to be different on one or both of the 

variables can inflate the value of the correlation coefficient. Again, Figure 1 1  graphically 

displays this concept. The relationship between job-related stress and salary for 

Institutional Researchers is plotted. Notice the two distinct groupings of data points 

found on this graph. The group in the upper right hand corner are all males and in the 

lower left hand corner all females. The overall correlation is strong (r = . 9 13)  and 

6 8 10 12 14 16 

Many researchers define an outlier as any score that falls above or below 2 standard 
deviations from the mean. 
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certainly the relationship is significant (12 = .00). However, the linear relationship is being 

enhanced by the presence of the difference in means found between these two groups. In 

fact, when the correlation coefficients are calculated separately for males and females they 

drop drastically and are both non-significant (males, r = . 179, 12 = .49; females r = .033 ,  12 
= .90). Again, remember always to graph your data and be alert for this type of problem. 

If you suspect the presence of divergent groups on any one of your variables, do a test of 

mean difference prior to running your correlational analysis. When significant differences 

are found, calculate and report separate correlation coefficients for each group. 

Figure 11 

Interpreting Correlation Coefficients: The Problem with Divergent Groups 

Salary in Thousands of Dollars 

$ +  

o 
o 10 20 30 40 50 60 70 

Amount of Stress 

Females Males 
• <> 

Other Statistical Procedures for Measuring Relationships 

Non-parametric Correlations: 
As mentioned previously, the PPMCC calculated in this case study is a 

parametric statistic. When the assumptions of a parametric statistic have been violated, 

several non-parametric correlational procedures exist. Within the bounds of this text, no 

attempt has been made to review all of these procedures; rather a brief example of one 

will be included. The nice aspect of all correlational procedures is that they generate a 

correlation coefficient, and the same universal characteristics of strength and direction 

apply to all coefficients. 

Within the context of Institutional Research, the use of non-parametric 

procedures is often warranted because of the use of ordinal Likert scales. For example, a 

researcher may wish to know if a relationship exists between satisfaction with academic 

programs and the SAT scores of applicants. Due to the fact that satisfaction with the 
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academic program is rated on a 5-point Likert scale, the use of the PPMCC is not 

statistically appropriate; rather the Spearman Rank-Order Rho Correlation Coefficient 

would be an appropriate non-parametric equivalent. As the name implies, the Spearman 

Formula generates a separate ranking for each subject on both variables .  The relationship 

between the order of the rankings for both variables is what is used to calculate the 

coefficient. The CORRELATIONS procedure from SPSS can also be used to calculate the 

Spearman Rank Order Rho correlation coefficient (SRORCC). For your reference, the 

formula for the SRORCC and the SPSS output for this procedure may be found in Table 9.  

Table 9 

Formula for 

Spearman Rank Order Rho Correlation Coefficient (SRORCC) 

R= 1 -

SPSS Output from 

Correlations Procedure (SRORCC) 

S P E A  R M A N  C O R  R E L A T I O N C 0 E F F I C I E N T S 

. 3 8 7 1  

N (  6 1 5 )  

S i g  . 0 0 0  

ACADPROG . 3 4 4 1  . 4 4 3 3  

N ( 6 1 0 )  N ( 6 1 0 ) 

S i g  . 0 0 0  S i g  . 0 0 0  

( COEFF I C I ENT / ( CASES ) 2 - TAILED S IGNI F ICANCE ) 

• I S  PRINTED I F  A COEFF I C I ENT CANNOT BE COMPUTED 

In reviewing the SPSS output, the SRORCC between verbal SAT and rating of 

academic program was found to be .334 and between math SAT and rating .443 .  Given 

the moderate strength of this coefficient and the fact that the correlation was statistically 

significant, the researcher would conclude that a significant positive linear relationship 

does exist between the ranking of satisfaction with academic program and SAT scores. In 
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simpler terms, as the applicant's ranking of his or her academic program increases, so 

does his or her SAT score. Overall good news for your institution.s 

The Spearman correlation coefficient is a common non-parametric choice for 

evaluating relationships between ordinal variables or for any combination of ordinal with 

interval or ratio data. Other non-parametric choices include Goodman's  or Kruskal's  

Gamma for ordinal data. The Phi coefficient measures the relationship between two 

nominal variables each with only two categories from a crosstabulation table (2 X 2) . In 

addition, a Contingency Coefficient is used to measure the relationship between other 

larger crosstabulation tables.6 The output of the SPSS procedure CROSSTABS will report 

the value of these coefficients. 

Regression Analysis: 

Correlation measures the linear relationship that exists between two variables. 

Once a correlation has been found between two variables the next logical question to ask 

is whether or not that relationship can be used to predict or explain one variable from the 

other. In correlation we have no true independent or dependent variable, because we are 

simply trying to measure the relationship between the two variables. However, in bi­

variate regression one variable is defined as the dependent or criterion variable and the 

other variable is the independent or predictor variable. In this analysis, the knowledge of 

the independent variable (Le. ,  high school GPA) is used to predict or explain the 

dependent or criterion variable (Le. ,  first-year GPA). Besides being a logical progression 

from correlation, regression has a great deal of practical application for practitioners. In 

Institutional Research, regression analysis is most commonly applied to predict first-year 

GPA, from some combination of independent variables (e.g. ,  SAT, HSGPA, admissions 

rating). After all, what better tool for admissions than to be able to accurately predict how 

a student will achieve academically? 

As a brief example of regression, high school grade point average will be used to 

predict first-year GPA. In this model, first-year GPA is the criterion or dependent 

variable, and high school GPA is the predictor or independent variable. The 

Remember, it is important not to imply any causal relationship between rating of 
program and SAT score. We did not manipulate either variable and thus have no 
knowledge of what other factors may be influencing or overlapping. 

Often beginning researchers believe that they want to measure the relationship between 
a nominal variable (e.g . ,  gender) and some other dependent variable which is ordinal, 
interval, or ratio (e .g. ,  LTDGPA, or SAT). However, this research design is not 
correlational, rather it is quasi-experimental. The researcher really wants to know if a 
difference exists between males and females with regard to the dependent variable. For 
more information on tests of differences refer to Chapter 3. 
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REGRESSION procedure from SPSS (Norusis, 1993) was used to calculate this statistic. 

The output from this procedure and a scatterplot displaying the relationship between these 

variables may be found in Table 10 and Figure 12. 

Table 10 

SPSS Output from Regression Procedure 

* * * * M U L T I P  L E R E G R E S  S I O N * * * * 

Equat i on Number 1 Dependent Var i ab l e  LTDGPA Grade Point Average 

B l o c k  1 .  Method : Enter HSGPA 

Var i abl e  ( s )  Entered on S t ep Number 
1 . . HSGPA H i gh School Grade Point Average 

Mul t ip l e  R . 2 3 4 2 0  
R Square . 0 5 4 8 5  
Adj u s t ed R Square . 0 5 3 2 2  
S t andard Error . 3 0 8 7 2  

Analys i s  o f  Var i ance 
DF Sum o f  Squares Mean Square 

Regr e s s  ion 1 3 . 1 9 7 0 3  3 .  1 9 7 0 3  
Res  i dual 5 7 8  55 . 0 8 9 4 9  . 0 9 5 3 1  

F = 3 3  . 54 3 3 0  S i gn i f  F = . 0 0 0 0  

- Var i ables in the Equat ion 

Var i ab l e  B S E  B Beta T S i g  T 

HSGPA . 2 0 3 5 9 0  . 0 1 7 9 8 0  . 2 3 4 2 0  5 . 7 9 2  . 0 0 0 0  
( Cons t ant  ) 2 . 6 3 4 7 4 2  . 0 5 3 8 0 4  3 2  . 1 5 2  . 0 0 0 0  

End Block Number 1 Al l requested var iables entered . 

Figure 12 

Scatterplot with Regression Line 
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The crux of the regression analysis centers on fitting a straight or linear line 

through the points on the scatterplot. The line is determined so that the distance between 

each and every point (Le., X, Y coordinates) and this line is the smallest possible distance. 

The formula for a straight line is Y' = a + bX. Two elements of this formula are the 

constant or y-intercept (a) and the slope or regression coefficient (b). The constant or y­

intercept represents the value ofY when X is O. In other words, the slope is the direction 

and intensity of the line and the y-intercept can be thought of as the starting point of the 

line. In this analysis, the constant represents an average of first-year GPA for all students 

when high school grade point average is O. However, since a 0 for high school GPA is not 

possible, the interpretation of this value is very limited at best. The slope represents the 

amount that the criterion variable increases or decreases in response to a one unit change 

in the predictor variable. In this analysis, the slope represents the average change in first­

year GPA for a one unit change in high school GPA. 

The beauty of regression analysis is that with the creation of the regression line, 

the researcher now can make a predicted score for any value of the predictor variable 

found within the range of the original data values. Predicted scores (Y') may be found by 

inserting the value of predictor variable (X) into the regression equation and solving for 

Y' . In this analysis, the regression equation is Y' = 2.63 + .204X. All predicted scores 

are found on the regression line, which is plotted on the scatterplot (Figure 12). 

Once the predicted score has been created, the next logical question is how good 

is your prediction? To answer this question, researchers may refer to two elements of the 

SPSS printout, the significance level of the slope (b) and the R2 value. The significance 

level of the slope determines whether the independent variable is a significant predictor of 

the criterion measure. In this analysis, the significance level is .00, so high school GPA is 

able to significantly contribute to the prediction of first-year GPA. As described earlier, 

R2 represents the total amount of dependent score variance that can be explained by the 

independent or predictor variables. In this analysis, 5 .4 percent of the first-year GPA can 

be explained by the high school GPA of first-year students. So while, high school GPA is 

a significant predictor of first-year GPA, 95.4 percent of the first-year GPA is unexplained 

or due to other factors. Would you be willing to bet on the accuracy of this prediction or 

do you feel that the model has limitations? The model is very limited. 

Several forms of regression analysis exist, the simplest of which is bivariate 

regression. As described above, bivariate regression refers to the analysis in which one 

predictor variable is used to explain one criterion variable. While this model is the easiest 

to conceptualize, the model is severely limited in that not often is any criterion variable 

able to be fully explained by one predictor variable. In this case study, first-year GPA 

could not fully be explained by knowing the high school GPA of entering students. 

Multiple regression encompasses all designs in which multiple predictor variables are 

used to explain one dependent or criterion measure. Both of the above mentioned 

procedures require that all variables used in the model be interval or ratio in measure.7 
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Logistic regression is another form of regression for designs in which a nominal 

dependent variable is predicted from some combination of ordinal, interval, or ratio 

independent variables. In Institutional Research, Logistic Regression has been commonly 

used to predict enrollment status (enrolled vs. non-enrolled) from some combination of 

predictor variables taken from an applicant data base (e.g., SAT, HSGPA, and ratings of 

various aspects of your institution). 

However, some coding procedures do exist for using nominal variables in regression 
analysis. The most common of these is dummy coding for a nominal variable with two 
levels or categories. While further discussion of these procedures is beyond the scope 
of this text, refer to Pedhauzer & Schmelkin ( 199 1 )  for elaboration of these procedures. 
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Chapter Four 

Chi-Square: Differences in the Frequency of Enrolling 

and Non-Enrolling Students by the Quantity of Aid Offered 

Case Study: 

With the rising cost of a college education, the majority of individuals applying 

to institutions of higher education are also applying for financial aid. The rising cost of 

education and the failure of government aid programs to keep pace with these increases 

have made it more and more difficult for colleges and universities to meet the very real 

need of applicants for aid. In recruiting and enrolling quality applicants, financial aid is a 

crucial component. 

This case involves a small private college with professional and pre-professional 

programs. The Vice-President for Enrollment Management has asked you to examine the 

percentage of need that is being met for a set of admitted students and how that impacts 

their enrollment status. The institution has a goal of meeting at least 60 percent of the 

demonstrated need of students. To date, the institution has been unable to reach this goal. 

While the overall issues of financial aid and the associated budgetary impacts are 

quite complex, the task requested by the Vice-President is more limited. The focus of this 

case study is to examine the 300 applicants who are deemed the most qualified candidates 

by the admissions office, and to determine whether the frequency of enrollment is higher 

for those students whose package met or exceeded the college's goal of awarding 60 

percent of need. From the financial aid office you must obtain the level of need met for 

each of these accepted applicants and assign it into one of two categories: at or above the 

60 percent goal, or less than the 60 percent goal. In addition, from your administrative 

files you must identify enrollment status (Le. ,  enrolled versus non-enrolled). This case 

study will be used to illustrate the application of the chi-square test statistic. More 

specifically, the statistic is a 2 X 2 chi-square. Two choices exist for enrollment (Le. ,  

enrolled or not enrolled) and two choices for aid (Le. ,  60% of need is met or not met). 

Example Box 6 illustrates this design. 

Example Box 6 

Enrollment Status 

Enrolled Not Enrolled 

60 % of Met 

Need Not Met 
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Background 

The chi-square test statistic compares the frequency of occurrence to one or 

more nominal or ordinal variables. Two commonly used forms of the chi-square test 

statistic are the one-way and the two-way chi-square. In a one-way chi-square, the 

researcher is attempting to determine whether the frequencies observed in the variable 

differ significantly from some previously anticipated distribution of responses, usually an 

equal distribution. In a two-way chi-square, the researcher is comparing the distribution 

of one variable (Le. ,  the dependent variable) across the categories of the other variable 

(Le. ,  the independent variable). 

Before proceeding to the calculation of the two-way chi-square and our case 

study, describing some characteristics of this test statistic is important. The focal point of 

the chi-square analysis is the comparison of the frequency of occurrence of a given 

characteristic(s) or response(s). Some researchers refer to the two-way procedure as a test 

of independence. In other words, do the responses observed for the independent variable 

provide any knowledge of the dependent variable? Variables are said to be independent 

when knowing the value of one variable will not help to predict the value of the other. 

Variables are said to be dependent or associated when knowing the value of one helps you 

to predict the other. 

Two important terms in chi-square are observed and expected frequencies. 

Observed frequencies (fo) are the actual results 'observed' in our data. They are the 

number of subjects who were observed within each of the categories or cells. In contrast 

expected frequencies (fe) are based on the theoretical number of people who would fall 

into each category assuming some particular hypothesis. Most researchers assume the 

null hypothesis that an equal number of people should fall into each category or that no 

differences are expected in the frequencies. The observed frequencies then are the actual 

data and the expected frequencies are based on a theoretical model or independence 

between the variables. Since the calculation of the chi-square centers on the analysis of 

the differences between observed and expected frequencies, when the difference between 

expected and observed frequencies is large enough, the null hypothesis is rejected. Then 

the conclusion can be made that the two variables are dependent or that a true population 

difference exists. l  

Two-way Chi-Square 

Basic Assumptions: 

Chi-square is a non-parametric statistic. As a result, chi-square can be designed 

to be used on all levels of data. The procedure requires that data be grouped into either 

nominal or ordinal categories. Therefore, interval or ratio data must be recoded in order 

to be analyzed through this statistic. 

Chi-square can be used as a test of association between two or more nominal or higher 
variables. Within the context of this text, chi-square is being explored as a non­
parametric test of differences between the frequency of response to two or more 
nominal or ordinal variables. 

49 



A second statistical assumption of the two-way chi-square is that the expected 
frequencies should not be too small. Authors of most basic statistics texts suggest that the 

expected frequency in any one cell or category be not less than 5 (Levin & Fox, 1 994, 

Triola, 1 995). For 2 X 2 chi-square tests, a correction formula for small expected 

frequencies, Yates' Correction, exists and is provided on the SPSS output. However for 

other designs, no global correction factor exists. When the number of cells with expected 

frequencies less than 5 is large,2 merging categories together wherever logical or plausible 

is highly recommended. 

Analysis of Data: 

In this analysis, the two variables are percentage of need met (� 60%, or < 60%) 

and enrollment status (enrolled, or non-enrolled). The 2 X 2 chi-square is calculated to 

determine whether a difference exists in the frequency of enrolled and non-enrolled 

applicants between the levels of need met. The CROSSTABS procedure from SPSS 

(Norusis, 1993) was used to calculate this statistic. The formula for the chi-square (X2) 

and the output from the SPSS procedure are presented in Table 1 1 . 

At the heart of the analysis of the X2 is the crosstabulation or contingency table. 

A contingency table is a distribution in which the frequencies correspond to combinations 

of the values of two variables. The row variable defines the dependent variable for the X2 

and the column variable the independent variable. Since we wish to determine whether 

enrollment is dependent upon financial aid, percentage of financial aid met is the 

independent variable and enrollment status is the dependent. Cells are found at the 

intersection of each row and column. For example, in our crosstabulation table in Table 

1 1  the frequency for the first cell is 1 1 3 and represents the number of enrolled applicants 

with � 60 percent of need met who enrolled. From within the SPSS procedure 

CROSSTABS, the user can customize the output provided in each cell. The most 

commonly requested and helpful values are observed frequencies and column percent. 

Again, observed frequencies represent the actual responses for each category or cell. The 

column percentages are obtained by dividing the observed frequency by the number of 

subjects or cases in that column and then multiplying by 100. The observed frequency for 

this first cell is 1 1 3 with a corresponding column percentage of 59.2. 

Other cell information that can be requested includes: row percent, total percent, 

expected frequency, and residuals. However, it has been our experience that keeping the 

amount of information requested in the cells to a minimum prevents misinterpretation. 

Row percentages provide the distribution of the column variable for each value of the row 

variable. In this analysis, these percentages represent the distribution of percentage of 

need met for each level of enrollment status. Given that percentage of need is our 

independent variable and enrollment status our dependent variable, these percentages are 

not necessarily meaningful, which is why column percentages were requested. Total 

percent represents the percentage results for the two variables jointly and is 

Large is normally defined as 20 percent or more of all cells. 
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Table 11 

Formula for Chi-Square Test Statistic <xl) 

= 

fe 
SPSS Output from CROSSTABS Procedure 

ENROLL Enro l lment S t at u s  by NEED Amount of Need Met 

NEED Page 1 of 1 

Count I 
C o l  P c t  = > 6 0 %  < 6 0 %  

I 
Row 

Tot a l  
_ _ _  1 -2 �  .J _

2�0
_ENROLL 1 

1 .  0 0  I 1 1 3  I 3 4  I 1 4 7  

enro l l ed 5 9 . 2  3 1 . 2  4 9 . 0  I I I 
2 . 0 0 1 5 3r �B- T -� 1  

Non - enro l l ed 5 1  . 0L �.� ..L �B� -.l  
C o l umn 1 9 1  1 0 9  3 0 0  

To t a l  6 3 . 7  3 6 . 3  1 0 0 . 0  

Chi - Square Va l u e  D F  S i gn i f i cant 

Pearson 2 1 . 7 2 4 3 2  1 . 0 0 0 0 0  

Cont i nu i ty Forrec t i on 2 0 . 6 1 9 5 0  1 . 0 0 0 0 1  

Minimum Expected F requency - 5 3  . 4 1 0  

Number o f  M i s s ing Observat ions  : 0 

calculated by dividing the observed frequency by the total number of subjects or cases in 

the sample and then multiplying by 100. Total percentages can be ambiguous and 

misleading because they do not provide any balance based on the number of individuals in 

either the row or the column. 

Expected frequencies represent the null hypothesis and describe the theoretical 

number of individuals who would be found in each cell if no association existed between 

the two variables. The formula for expected frequency is:  

f e = (number in the row * number in the column) / total N 

Residual values are crucial to the calculation of the chi-square. Residuals measure the 

differences between what was observed and what is expected. Several forms of residual 

values can be calculated: unstandardized, standardized, and adjusted standardized. 

However, the unstandardized residual values are the most common and easiest to 

understand. Unstandardized residuals represent the difference between observed and 

expected frequencies (fo - fe values). The sum of the unstandardized residuals will always 

equal zero. Since both observed and expected frequencies account for all subjects, the 
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sum of the difference between these two values must always balance each other. 

The next step in calculating the X2 is to square the residual values. As we saw in 

Chapter 1 when we calculated variance, the procedure for eliminating the negative sign of 

a value is to square the number. Next, the X2 formula calls for the researcher to divide the 

squared residual [(fo - fe)2] by expected frequency if J. The final X2 value is found by 

summing each of these values across all cells. The SPSS output reported in Table 1 1  

indicates that this X2 value, labeled Pearson, is 2 1 .52.  That is Pearson as in Karl Pearson 

of Pearson Product-Moment Correlation Coefficient fame who also developed this chi­

square formula. Table 1 2  illustrates the above mentioned calculations for this data. 

Table 12 

Calculations for Two-Way Chi-Square 

Observed Frequency 

=> 60% <60% Total 

Enrolled 1 1 3  34 1 47 

Non-Enrolled 78 75 1 53 

Total 191 1 09 300 

Expected Frequency 

18=(. In roW" In column) I Total N 

=> 60% <60% 

Enrolled 93.59 53.41 

Non-Enrolled 97.41 55.59 

Calculations ot Two-Way Chi-Square 

Cells 

=> 60% Enrolled 

= >  60% Non-Enrolled 

to 

1 1 3  

78 

18 

98.59 

97.41 

to-fe 

1 9.41 

-1 9.41 

376.7481 

376.7481 

3.82 1 4  

3.86n 
<60% Enrolled 53.41 -1 9.41 376.7481 7.0539 

<60% Non-Enrolled 75 55.59 1 9.41 376.7481 6.7773 

E(fo-fe) 2fe - 21.5203 
A X2 value of zero indicates that observed frequencies are identical to expected 

values. Thus, the larger the X2, the larger the difference between observed and expected 

frequencies. However, the question still remains: Does a significant difference in the 

frequency of enrollment status exist between those applicants who had � 60 percent of 

need met and those who did not? Of course, in order to generalize about this difference 

a test of significance must be performed. According to the SPSS output, our chi-square 

value is significant (12 ;;; .00). Thus, percentage of need met and enrollment status are 

associated. However, we still need to know: Which level of percentage of need is more 

likely to have a higher level of enrolled students? 

52 



In order to further analyze the differences found in this X2, the researcher has two 
options. Option one is to calculate separate one-way chi square values for each column of 

the cross tabulation table;3 reporting the finding and statistical significance separately for 
each level of the dependent variable. A second option would involve reviewing the table 

and identifying differences in column percentages above a certain value as significant.4 

Either one of these column analyses should be done to better interpret the overall 

significant (12 < .05) chi square. Little value is found in saying that a significant difference 
exists in the frequency of enrolled and non-enrolled applicants between the levels of 
percentage of need met, without saying where the differences were. A more specific 
statement is necessary. However, option one is by far the more preferable method to 
determine statistically where these significant differences exist. Option two does not 
contain any test of statistical significance. In some instances, where the trends are so 

obviously seen in the column percentages, this additional step may be nothing more than 
tedious paperwork. 

In completing this analysis, the one-way analyses were run separately for each 

level of need: ;;:: 60%, < 60%. The results may be found in Table 1 3 .  Significantly more 
students who had 60 percent or more of their need met enrolled at the College. 

Conversely, significantly more students who had less than 60 percent of their need met did 
not enroll. 

Table 13 
SPSS Output from NPAR Tests 

Separate One-Way for Each Level of Need 

NEED  : 1 . 0 0 = > 6 0 %  
Ch i - Square 

ENROLL Enrol  lme
Te

nt 
s t  
S t at u s  

Cat egory 
enro l l ed 1 . 0  0 
non - enro l l ed 2 . 0 0 

To t a l  

C a s e s  
Obse rved 

1 1 3  

-----2.6. 
1 9 1  

Expec ted 
9 5  . 5 0 
9 5  . 5 0 

Res i dua l  
1 7  . 5 0 

- 1 7  . 5 0 

Ch i - Square 
6 . 4  1 3 6  

D . F .  
1 

S i gn i f i cance 
. 0 1 1 3  

NEED  : 
- - - -

2 . 0  0 < 6 0 %  
- - Ch i - Square Te s t  

ENROLL Enro l l ment S t a t u s  

enro l l ed 
non- enro l l ed 

C a t egory 
1 .  0 0  
2 . 0 0 

To t a l  

C a s e s  
Obs e rved 

3 4  

-.l.B. 
1 9 1  

Expec t ed 
5 4  . 5 0 
5 4  . 5 0 

Res  idua l  
- 2 0  . 5 0 

2 0  . 5 0 

Ch i - Square 
1 5  . 4 2 2 0  

D . F .  
1 

S i gn i f i cance 
. 0 0 0 1  

The easiest way to run these separate one-way chi-squares is to use the SPLIT FILES 
procedure in SPSS (Norusis, 1993). The split files command will run the NPAR TESTS 
procedure repeatedly for each level of the dependent variable. 

Some researchers define this value as anywhere from 5 to 10 percent; however, any 
value picked is arbitrary. 
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63 . 7  63 . 7  
6 . 7  

. 3  

. 3  

. 7  . 7  

. 3  
. 3  

3 5 . 7  . 7  . 7  
. 3  . 3  

. 7  
. 7  
. 3  . 3  

. 3  . 3  
. 3  . 3  
. 7  

Limitations in Chi-Square Analyses: 

The chi-square statistical procedure is one of the statistical procedures most 
commonly used by Institutional Researchers. Many reasons exist for the widespread use 

of chi-square in Institutional Research. The majority of the variables analyzed by 
Institutional Researchers are nominal or ordinal in nature. Thus, many of our research 
questions focus on the frequency with which certain events occur. Additionally, chi­
square is a basic statistical procedure that is familiar to most Institutional Researchers. 
While the applications for chi-square in Institutional Research are many, some limitations 
also exist. 

For a chi-square analysis to be valid, the categories of the variables must be 
discrete and mutually exclusive (i.e., nominal or ordinal level of measurement). Often, 
Institutional Researchers will take a variable that is continuous in nature and collapse the 
data into ordinal categories. In this case study, the variable percentage of need met is a 
ratio variable, which was collapsed into nominal categories (i.e., � 60%, and < 60 

percent). From our case study, Table 14 shows the frequency distribution of the 
percentage of need variable both before and after recoding. By recoding need percentage, 
the researcher has lost valuable information. For example, do other percentage break 
downs make a difference in enrollment status? What is the mean difference in the 

percentage of need met between enrolled and non-enrolled applicants? Chi-square is not 
the appropriate test statistic to answer the latter of these two questions; a t-test is 
statistically appropriate. 

Table 14 
SPSS Output from FREQUENCY Procedure 

Before Recode After Recode 
PERCNEED Actual percentage of Need Met NEED percentage of Need Met 

Val i d  Cum val i d  Cum 
ValueLabel V a l  ue Frequency Percent Percent Percent 

1 . 7  
Percent Percent 

3 6 . 3  1 0 0 . 0  
valueLabel value Frequency Percent 

1 9 11 . 71 5 . 0 0 1 . 75 1 .  0 0  63 . 7  = >  60%  
9 . 0  

2 0 . 0 0 2 0  
2 5 . 0 0 2 7  

6 . 7  8 . 3  < 6 0 %  2 . 0 0 1 0 9  3 6 . 3  
9 . 0  1 7 . 3  

2 6 . 0 0 5 1 . 7  1 . 7  1 9 . 0  Total 3 0 0  1 0 0 . 0  1 0 0 . 0  
2 7 . 0 0  4 1 . 3  1 . 3  2 0 . 3  
2 8 . 0 0 3 1 . 0  1 . 0  2 1 . 3  Valid cases 3 0 0  M i s s i ng casesO 

2 . 02 9 . 0 0 6 2 . 0  2 3 . 3  
3 0 . 0 0 1 . 3  2 3 . 7  

. 7  
3 1 .  0 0  1 
3 3 . 0 0 2 

24 . 0  . 3  
2 4 . 7  . 7  

3 4 . 0 0 3 1 . 0  1 . 0  2 5 . 7  
3 5 . 0 0 2 7 . 76 2 . 0

. 3  
2 . 0  

3 6 . 0 0 2 8 . 0  
2 8 . 7  
2 9 . 0  

1 . 3  

. 3  
3 7 . 0 0 2 

. 3  
3 8 . 0 0 1 

3 . 3  
3 9 . 0 0 1 
4 0 . 0 0  1 0  

2 9 . 3  
3 2 . 6  3 . 3  

4 5 . 0 0 1 . 7
. 7  

3 4 . 3  
3 5 . 0  

3 6 . 0  

5 1 . 7  
52 . 0 0 2 
53 . 0 0  2 

. 7  

1 . 3  1 . 3  
5 6 . 0 0  1 
5 8 . 0 0 
6 0 . 0 0  
6 1 .  0 0  

4 3
4 

5 8  

3 7 . 3  
51 . 7 1 4  . 3  1 4 . 3  
7 1 . 0  1 9 . 3  1 9 . 3  

62 . 0 0 1 6  1 2 . 0  1 2 . 0  83 . 0  
63 . 0 0 8 6 . 0  

8 6 . 7  
8 7 . 3  

9 3 . 0
. 7  

3 . 0  

. 7  
6 4 . 0 0 2 
69 . 0 0 2 
7 0 . 0 0  2 8 7 . 7  
7 1 . 0 0 1 8 8 . 0  

. 7  
72 . 0 0 1 8 8 . 3  

89 . 0  
1 . 3  

7 3 . 0 0 2 
7 4 . 0 0 4 1 . 3  9 0 . 3  
7 5 . 0 0  7 2 . 3  2 . 3  9 2 . 6  
7 7 . 0 0  
7 8 . 0 0  
7 9 . 0 0  

4 .
9 

3 

3 . 1  3 . 1  9 5 . 7  
1 . 3  1 . 3  9 7 . 0  
1 . 0  1 . 0  9 8 . 0  

8 0 . 00 6 2 . 0  2 . 0  1 0 0 . 0  

Total 3 0 0  1 0 0 . 0  1 00 . 0  
Val i d  cases 3 0 0  M i s s i ng cases 
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As mentioned earlier, a basic assumption of the chi-square test statistic is that the 

minimum expected frequency for anyeone cell should not be less than 5. Often when 

many cells with low expected frequencies are present, the researcher will merge or 

combine similar categories to create cells with larger expected frequencies. For example, 

when analyzing differences in levels of satisfaction between males and females from a 
Likert scale, the researcher may combine the categories of 'very dissatisfied' with 
'somewhat dissatisfied' and 'very satisfied' with ' somewhat satisfied' to meet this basic 
assumption of the chi-square. Again, the major problem with this solution is the loss of 
information; the differences in the extremes are no longer distinguishable. Often the 
researcher is better off performing a non-parametric test for differences between groups, 
such as the Mann Whitney U test, to analyze the differences in Likert scale responses.  

Other Statistical Procedures 

One-way Chi-square: 

Often Institutional Researchers look at a frequency distribution and wonder if a 

pattern exists in the responses to the item or question. The one-way chi-square is a test 

statistic that allows the researcher to determine whether the frequencies observed in the 
variable differ significantly from an anticipated distribution of responses. In this case 

study, the Institutional Researcher may wish to explore further the amount of need that is 
being met for all applicants to attempt to determine where the College stands in regards to 
the goal of meeting at least 60 percent of documented need. 

To further explore this topic, the researcher goes back to the financial aid file and 
retrieves percent of documented need met for all 460 applicants. To facilitate the process 
the researcher recodes the actual percentage of need into five categories: 0 to 19%,  20 to 
39%,  40 to 59%, 60 to 79% and 80 to 100% . After recoding the data, the FREQUENCY 
Procedure from SPSS (Norusis, 1993) is run to create a frequency distribution, followed 
by the NPAR TESTS procedure to calculate the one-way chi-square test statistic. The 
output from these two procedures may be found in Table 15 .  

From the SPSS procedure NPAR TESTS , notice that the calculation of  the 
one-way chi-square follows the same procedures and formulas as presented for the 
two-way chi-square . The procedures are simplified by the fact that the expected 

frequencies represent an equal distribution of respondents in each of the categories. 

For our analysis, the expected frequency for each category is 92 (i .e. ,  460 divided by 
5) ,  the calculated chi-square value is 5 .57,  and the corresponding significance of the 
chi-square value is .23 . Thus,  no significant difference exists in the frequency of 
applicants receiving the various levels of percentage of documented need. 
Unfortunately for the institution, the data do not support the claim that the College is 
making progress toward meeting a minimum of 60 percent of the documented need of 
the applicant. In fact, students were j ust as likely to get less than 60 percent of need 
met as they were to get 60 percent or more. In order to support this claim, a 
significant difference would exist with significantly more students falling in the 
higher categories of percentage of need. 
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Table 15 

SPSS Output from FREQUENCY Procedure 

NEED Amount of Need Met 

Va l u e  LabelVa l u e F requency Perc ent 
Va l i d  

Perc ent 
Cum 

P e r c ent 

o to 1 9 %  1 .  0 0  
2 0  t o  3 9 %  2 . 0 0 
4 0  t o  5 9 %  3 . 0 0 
6 0  t o  7 9 %  4 . 0 0 
8 0  t o  1 0 0 % 5  . 0 0 

8 5  
9 5  
8 9  

1 1 0  
8 1  

1 8  . 5  
2 0  . 7  
1 9  . 3  
2 3  . 9  
1 7  . 6  

1 8  . 5  
2 0  . 7  
1 9  . 3  
2 3  . 9  
1 7  . 6  

1 8  . 5  
3 9  . 1  
5 8  . 5  
8 2  . 4  

1 0 0 . 0  

T o t a l  4 6 0  1 0 0 . 0  1 0 0 . 0  

Va l i d  C a s e s  4 6 0  Mi s s i ng c a s e s  0 

SPSS Output from NPAR Tests 

- - - - - Chi - Square T e s t  

NEED Amount of Need Me t 

C a s e s  

Category Obs erved Exp e c t e d  Re s i dual 

o t o  1 9 %  1 .  0 0  8 5  9 2 . 0 0 - 7 . 0 0 
2 0  t o  3 9 %  2 . 0 0 9 2  . 0 0 3 . 0 0 
4 0  t o  5 9 %  3 . 0 0 8 9  9 2 . 0 0 - 3 . 0 0 
6 0  t o  7 9 %  4 . 0 0 1 1 0  9 2 . 0 0 1 8 . 0 0 
8 0  t o  1 0 0 %  5 . 0 0 8 1  9 2 . 0 0 - 1 1 . 0 0 

T o t a l  4 6 0  

Chi - Square D . F .  S i gn i f i c anc e 

5 .  5 6 5 2  4 . 2 3 4 1  

Chi-Square Automatic Interaction Detection (CHAID) 

CHAID is a more advanced statistical procedure that has potential applications 
in Institutional Research. The statistical algorithm for CHAID was based upon the 
Automatic Interaction Detection (AID) procedure developed in the 1 960's. AID was 
linked in theory and application to ''Tree Analysis" which was commonly used in 
segmentation analysis and marketing research. The overall goal of all of these procedures 
is the discovery and specification of population groups (i.e., segments) that differ in their 
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probability of a given event (Le., the dependent variable). For example, in Institutional 

Research we are very interested in discovering whether certain segments or subgroups of 
our applicant pool have a higher probability of enrolling at our institution or whether any 

segments or subgroups of our student population are at a greater risk of withdrawing. 

Thus, the overall goal of CHAID and other segmentation modeling procedures is to divide 
the population into mutually exclusive and exhaustive subgroups (Le. ,  the segments) 

which differ with respect to the dependent variable (e.g., enrolling or not enrolling), and 
to identify those segments that are "best" from a marketing perspective, so that they can 
be targeted. 

At fIrst glance, CHAID appears to be most commonly related to the chi-square 
test statistic; however, CHAID procedures are squarely grounded in regression theory. 
CHAID begins by identifying the "best predictor" of the dependent variable (e.g. ,  

enrolling or withdrawing) and splits the population into distinct groups based upon the 
categories of the "best predictor." Once a variable has been defIned as the "best predictor" 
variable, CHAID will create a two-way crosstabulation of this variable with the dependent 
variable. At this point, CHAID will attempt to create optimally merged categories of this 

predictor variable using a form of chi-square analysis. CHAID then performs these 
operations in an iterative process until all subgroups have been analyzed or contain too 
few observations. 

Please be reminded that the CHAID procedure is an advanced and complex 
statistical procedure with a variety of different options. A complete explanation of this 
procedure would be beyond the scope of this text. For a more complete description of the 
CHAID procedures, refer to Madgison ( 1992). 
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Chapter Five 

Selecting the Appropriate Statistic 

One of the most puzzling dilemmas for novice statisticians is the decision 
concerning which statistical procedure is appropriate for the data at hand. It has been our 
experience that many people are quickly able to carry out a procedure to which they have 
been specifically directed. Thus, identifying the appropriate procedure is much more 
difficult than actually carrying out the analysis. In order to accelerate the learning curve, 
several variations of a statistical decision tree have been developed (Emory & Cooper, 

199 1 ;  Kervin, 1992; Zikmund, 1992). Each model has its own strengths and weaknesses. 

The statistical decision tree described in this chapter was initially developed by Dr. Robert 
Lussier of Springfield College and was later revised in conjunction with Mary Ann 
Coughlin. A copy of the tree is found in Figure 1 3 .  The following text describes the 
nomenclature used in the tree and walks the reader through the decision tree using the 
case studies that were cited in the previous chapters. 

The design tree shown in Figure 1 3  is meant to be a tool to help you answer the 
difficult question: What statistical procedure is appropriate for this design? Computer 
software, such as SPSS (Norusis, 1993), has made performing complex statistical 

procedures as easy as pointing and clicking. However, using these tools is the easy part; 
understanding and appropriately interpreting the analysis is harder. No tool should 
replace a solid understanding of the statistical procedure you are about to use. A very real 
danger exists in blindly performing advanced statistical procedures without an 
understanding of the underpinnings of these procedures. Several good references exist for 
advanced statistical procedures (Norman & Streiner, 1 986; Norusis, 1 993;  Pedhauzer & 
Schmelkin, 1991) .  However, the tree presents a solid outline for identifying the 

appropriate statistical procedure for your analysis. 

Using the Design Tree 

The design tree was developed following the model of a flow chart. The user 
starts on the far lefthand side of the first page and answers a series of questions found in 
the columns of the chart. The answers to each of the questions lead the user to the last 
column which lists the correct statistical procedure based on the design. The questions 
are designed to determine key pieces of information about the research design that will 
determine which statistical procedure is appropriate. 

Before proceeding to describe the questions, learning some key abbreviations is 
important. First as you would expect, DV or yl is synonymous with the dependent 
variable, and IV or X with the independent variable. However, the fact that k stands for 3 
or more is 

For your convenience, throughout the remainder of the chapter terms and values are 
bolded when they appear on the design tree. 
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less obvious.  So that "independent groups" does not get confused with "independent 

variable," the term unmatched is a synonym for independent groups, while matched is 
synonymous with repeated measures. For a review of some of these basic terms, refer to 
Chapter 1 for a discussion of independent and dependent variables, and Chapter 2 for 
independent groups and repeated measures. 

The first question asks "What are you testing?" and has four possible response 
options: difference, association, prediction, and interrelationship. A test of differences 

is designed to examine whether differences of a significant magnitude exist between the 
levels of one or more independent variables with regard to some dependent measure(s) . 

Within the scope of this text, tests of differences were discussed in Chapter 2 and Chapter 

4. In Chapter 2, differences in faculty salaries between the genders and divisional status 
were explored. In Chapter 4, differences in frequencies were explored between enrolling 
and non-enrolling students across the levels of financial aid received. Tests of association 

measure the strength and direction of relationships between two or more variables. Tests 
of association were discussed in Chapter 3, when the relationship between high school 
grade point average and first-year grade point average was explored. Tests of prediction 

are used to assess the accuracy of predictions about the dependent variable based upon 
the knowledge of the independent variable. A brief introduction to tests of prediction was 

provided in Chapter 3, when the ability of high school grade point average to predict first­
year grade point average was explored with regression analysis. Finally, tests of 
interrelationships are used to reduce or group a large number of associated variables, 

subjects, or objects into smaller groupings. The two statistical procedures described in 
this section of the design tree are factor analysis and cluster analysis. These procedures 
are included in the design tree to make the tree as complete as possible, but are beyond the 

scope of this introductory text. 
The remaining questions on the design tree all have to do with important issues 

regarding the assumptions of the statistical procedures and how these assumptions relate 
to your research design. The questions vary slightly with the purpose of your research 

(i.e., what you are testing: difference, association, prediction or interrelationship). 

Most of the questions center around the number and level of measurement of your 

independent and dependent variables, as well as the type of independent variable. For a 
review of the levels of measurement variables refer to Chapter 1 ;  for a discussion of the 
type of independent variable (independent groups, repeated measures,2 or mixed) refer to 
Chapter 2 .  

Examples of the Design Tree: 

To provide some brief examples of the design tree, each case study will be re­
examined. The first case study, provided in Chapter I ,  sought to determine whether 

differences existed between the salary of male and female assistant professors. Given that 
our purpose is to determine whether differences exist, the answer to the first question on 

Remember, unmatched is synonymous with independent groups and matched is 
synonymous with repeated measures. 
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the design tree - what are you testing - is difference. So from the Start circle, follow the 

arrow up to difference. The next column asks the question, what is the number and level 

of measurement of the dependent variable? The dependent variable in this case study is 

salary, so one dependent variable exists and is measured at the ratio level. Follow the 

arrow down to 1 Interval/Ratio. The next column asks how many independent variables 
are in this design. The answer is 1 (gender), so follow the arrow straight across to 1. The 

next column asks how many levels or groups exist within the independent variable? Since 
gender has two levels or groups (Le., male and female), follow the arrow straight across to 
2. The final question asks what type of independent variable is gender. Since gender is an 
independent groups variable (Le. ,  individuals are either male or female), follow the arrow 
straight across to unmatched.2 In the last column across from unmatched, the 
appropriate statistical procedure is listed, independent groups t-test. 

Our second case study in Chapter 3 explored the relationship between high 
school grade point average and first-year grade point average. Given that our purpose is 
to measure relationships, the answer to the first question on the design tree, what are you 

testing, is association. So from the Start circle, follow the arrow down to the second 
page to association. The next column asks what is the lowest level of measurement of all 

of the variables. Since high school grade point average and first-year grade point average 
are both interval level of measurement, follow the arrow down to IntervalJRatio. The 

next question asks how many variables are being analyzed. In this design, the relationship 
is between two variables, high school grade point average and first-year grade point 
average, so follow the arrow straight across to 2. The last column across from 2 lists the 
appropriate statistical procedure, Pearson correlation coefficient (R). 

In Chapter 4, the case study attempted to determine whether significant 
differences existed between the enrollment pattern of applicants who were awarded grants 

that matched or exceeded 60 percent of their documented need and those whose award did 
not meet 60 percent of their need. Given that our purpose is to determine if differences 
exist, the answer to the first question on the design tree, what are you testing, is 

difference. So from the Start circle, follow the arrow up to difference. The next column 

asks what the number and level of measurement of the dependent variable is .  The 

dependent variable in this case study is enrollment status, so one dependent variable exists 
and is at the nominal level of measurement. Follow the arrow up to 1 nominal. The next 

column asks how many independent variables are in this design. The answer is 1 (amount 
of need met), so follow the arrow straight across to 1 or more. The next column asks how 
many levels or groups exist within the independent variable. Since amount of need met 
has two levels or groups (i.e., ;;:: 60% and < 60%), follow the arrow straight across to 2.  
The final question asks what type of independent variable is amount of need met. Since 
amount of need is an independent groups variable, follow the arrow straight across to 
unmatched.2 In the last column across from unmatched, the appropriate statistical 
procedure is listed, chi-square. 
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Appendix A 

SPSS Commands 

The following is a list of SPSS menu selections that were run to perform the analyses 
discussed throughout this text. To replicate any of the output, follow the basic set of 

menu selections. 

For FREQUENCIES: 

S t at i s t i c s  

S ummar i z e  

Fr equenc  i e s  

E n t e r  a l l o f  your var i ab l e s  

S t at i s t i c s  

Qu art  i l e s  

Mean 

Medi an 

Mode 

S um 

S t andard Devi at i on M i n imum S kewn e s s  

Var i an c e  Max imum Kur t o s i s  

Cont  i nu e  

O K  

For Independent Groups t-test: 

S t a t i s t i c s  

Compare Mean s 

I ndependent S amp l e s  t T e s t  

Te s t  Var i abl e = Dependent var i abl e 

Group ing Var i ab l e  = i ndep endent var i ab l e  

De f i ne Group s  

Group 1 1 

Group 2 2 
C on t  i nu e  

O K  
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For One-way ANOVA: 

S t a t i s t i c s  

Comp a r e  Mean s  

One - Way ANOVA 

Te s t  S c o r e  -> Dependent Var i ab l e Box 

I nd . Var . -> Fac t o r Box 

De f i n e  Range 

M i n imum l owe s t  

Max imum h i ghe s t  

Cont  i nu e  

Po s t  H o c  

x L ea s t  S i gn i f i cant D i f f e renc e 

x S t udent Newman - Keu l s  

x Tukey H S D  

x S che f f e 

Con t i nu e  

Op t i o n s  

x De s c r ip t ive s  

x Homogene i ty o f  Var iance 

Cont  i nu e  

OK 

For Correlation (Either Pearson or Spearman) : 

S t a t i s t i c s  

C o r r e l a t e  

B ivar i a t e  

Move TWO VAR IABL E S  i n t o  t h e  Var i ab l e  Box 

Check e i ther P e a r s on or Spearman and l e ave other two checked : 
x Pear s o n  or x Spearman 

x two - t a i l e d  

x d i sp l ay a c t u a l  s i gni f i c an c e  l eve l 

OK 

For two-way Chi-Square: 

S t a t i s t i c s  

Summar i z e  

C ro s s t abs 

Move I ndependent Va r i ab l e  to COLUMN ( X )  
Move Dependent Var i ab l e  t o  ROW ( Y )  

S t at i s t i c s  C e l l s  

x c h i  s quare x c o l umn 

Cont  i nu e  

OK 
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nonparametric 

appraisal intelligence. 

applications 

Elementary 

guide. 

Sturdy statistics. nonparametrics 

PDO 

System guide: 

guide. 

Measurement. design. analysis :  
integrated approach. 

Nonparametric 

analysis .  

Elementary 
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